La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Matematica e statistica Versione didascalica: parte 3 Sito web del corso Docente: Prof. Sergio Invernizzi, Università di Trieste

Presentazioni simili


Presentazione sul tema: "Matematica e statistica Versione didascalica: parte 3 Sito web del corso Docente: Prof. Sergio Invernizzi, Università di Trieste"— Transcript della presentazione:

1 Matematica e statistica Versione didascalica: parte 3 Sito web del corso Docente: Prof. Sergio Invernizzi, Università di Trieste

2 2.8. Il problema dellarea Supponiamo che una funzione sia positiva (o zero) f(x) 0 per tutti i valori x di un intervallo [a, b], con a < b. Lintegrale della funzione f da a a b è larea della parte di piano compresa fra lasse X ed il grafico di f, entro le ascisse a e b

3 Simbologia area ( ) = Esempi:

4 2.9. Calcolo numerico degli integrali I metodi per il calcolo di integrali che qui trattiamo sono: Metodi di interpolazione: il metodo dei rettangoli, ed il metodo dei trapezi, basati sulla interpolazione di Lagrange; Metodi probabilistici: il metodo di Monte-Carlo, un metodo molto generale basato sulla simulazione di variabili aleatorie; Metodi esatti (o metodi formali), basati sul Teorema Fondamentale del Calcolo.

5 Metodi di interpolazione Si supponga di conoscere una tabulazione della funzione f(x) 0 a passo costante h sullintervallo [a, b], con a < b.

6 2.9.2/3. Metodi dei rettangoli e dei trapezi La funzione può essere interpolata con la interpolazione costante o con la interpolazione lineare può essere approssimato con le aree verdi Sommando aree di rettangoli (metodo dei rettangoli), oppure Sommando aree di trapezi (metodo dei trapezi)

7 Regole Regola dei rettangoli: Regola dei trapezi: Qui salta lultimo punto qua no

8 La regola dei rettangoli qui definita può essere detta dei rettangoli destri, in quanto tali rettangoli stanno a destra della ascissa in cui sono calcolate le loro altezze. Chi studia può ricavare le regola dei rettangoli sinistri, che stanno a sinistra della ascissa in cui sono calcolate le loro altezze: viene conseguentemente saltato il primo punto: In questo corso utilizziamo di default i rettangoli destri.

9 Cenno storico

10 Etimologia di trapezio trapezio = banco, tavolo τραπεζα = banca (Τραπεζα τησ Ελλαδοσ, Banco di Napoli, Banco Monte dei Paschi di Siena)

11 Regola dei rettangoli su R > f a b n h xtab h*(sum(f(xtab))) -> integrale > integrale

12 Regola dei trapezi su R > f a b n h xtab h*(sum(f(xtab))-(f(a)+f(b))/2) -> integrale > integrale

13 Regola dei rettangoli su TI-82 ClrHome Input "A= ",A Input "B= ",B Input "N= ",N Input "F(X)= ",Y 1 (B-A) / N -> H Y 1 (A)-> S For(K,2,N,1) S+Y 1 (A+(K-1)*H) -> S End S*H -> S Disp "Integrale= ",S

14 Regola dei trapezi su TI-82 ClrHome Input "A= ",A Input "B= ",B Input "N= ",N Input "F(X)= ",Y 1 (B-A)/N -> H (Y 1 (A)+ Y 1 (B))/2 -> S For(K,2,N,1) S+Y 1 (A+(K-1)*H) -> S End S*H -> S Disp "Integrale= ",S

15 Stima dellerrore Metodo dei rettangoli Metodo dei trapezi Ad esempio per il calcolo di si può assumere M 1 = M 2 = 1 per cui con sole n = 250 suddivisioni si ha | - R n | (NB: si divide per n ) | - T n | (NB: si divide per n ² )

16 Esercizio Calcolare con il metodo dei trapezi con n = 250 e fornire una stima dellerrore esaminando graficamente la derivata seconda con R (o con la funzione TRACE della TI-82) Suggerimento: I matematici hanno dimostrato che per questo integrale (di una funzione importantissima: la gaussiana) non esistono metodi esatti.

17

18 > f <- function(x) 2*(1+exp(-(1/5)*(x-4)^2)) > a <- 1 > b <- 5 > n <- 250 > h x<-a+c(0:n)*h > y <-f(x) > plot(x,y) > (sum(y)-(y[1]+y[n+1])/2)*h [1] > f2 <- function(x) (4/25)*(27-16*x+2*x^2)*exp(-(1/5)*(x-4)^2) > curve(abs(f2(x)),1,5) > M2 <- 0.8 > (1/8)*M2*(b-a)^3/n^2 [1] >

19 Metodo Monte-Carlo Calcolare larea della parte di piano definita dalla disuguaglianza Fissiamo un rettangolo [a, b] × [c, d ] che contenga tutto il pesce e spariamo n = (cinquantamila) punti a caso nel rettangolo. Contiamo il numero k dei punti che colpiscono il pesce (bordo del pesce compreso). Allora sarà: area cercata = ( k / n ) × area totale del rettangolo

20 Esempio {{a, b}, {c, d}} = {{-0.15, 1.37}, {-0.35, 0.35}}; area totale = (b - a) (d - c) = 1.064; n = 50000; k = 34280; Integrale (o area) = Formalmente sarebbe (ma gli estremi sono comunque calcolati numericamente!)

21 Metodo Monte-Carlo su R xcaso ycaso (insuccesso) ycaso (successo)

22 Metodo Monte-Carlo su R > x <- c(1,3,4,1,3,5,6,3) > z <- which(x < 4) > z [1] Il comando which x[1]=1 x[2]=3 x[4]=1 x[5]=3 x[8]=3 z ha 5 elementi, che non sono i cinque elementi di x minori di 4, bensì i cinque indici di tali elementi, ordinati come lo sono in x. La lista c(1,3,1,3,3) degli elementi di x minori di 4 è x[z].

23 Metodo Monte-Carlo su R > f a b c d prove xcaso ycaso z successi p integrale plot(xcaso[z],ycaso[z], col="red") > plot(f,0,b, add=TRUE, col="blue")

24 Metodo Monte-Carlo su TI-82, I ClrHome ClrDraw PlotsOff FnOff Disp " " Disp "Integrazione" Disp "di f(x) 0 " Disp "Met. Monte Carlo" Input "A= ",A Input "B= ",B Input "N= ",N Input "f(x)= ", Y 1 (in blu i comandi essenziali) Esempio:

25 Metodo Monte-Carlo su TI-82, II 0 -> C (B-A)/100 -> W max(seq(Y 1 (X),X,A,B,W) -> D A -> Xmin B -> Xmax C -> Ymin D -> Ymax AxesOff DrawF Y 1 (X) 0 -> S Text(55,1,"Successi =") Text(47,1,"Prove =")

26 Metodo Monte-Carlo su TI-82, III For(K,1,N) Text(47,28,K) A+rand*(B-A) -> X C+rand*(D-C) -> Y If Y Y 1 (X) Then Pt-On(X,Y) S+1 -> S Text(55,40,S) End Text(5,60,"[ ENTER ]") Pause ClrHome (B-A)*(D-C)*S/N -> I Disp "Integrale =",I


Scaricare ppt "Matematica e statistica Versione didascalica: parte 3 Sito web del corso Docente: Prof. Sergio Invernizzi, Università di Trieste"

Presentazioni simili


Annunci Google