La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Istituzioni di Economia Politica prof. L. Ditta La funzione di produzione, Produttività marginale, SMST e rendimenti Facoltà di Giurisprudenza Università

Presentazioni simili


Presentazione sul tema: "Istituzioni di Economia Politica prof. L. Ditta La funzione di produzione, Produttività marginale, SMST e rendimenti Facoltà di Giurisprudenza Università"— Transcript della presentazione:

1 Istituzioni di Economia Politica prof. L. Ditta La funzione di produzione, Produttività marginale, SMST e rendimenti Facoltà di Giurisprudenza Università di Perugia Presentazione basata su materiali del prof. Rodano

2 Tecnologia e costi La curva dofferta dipende dal costo marginale (e dunque del costo totale C(q) da cui il Cmg è derivato). Dipendono da due cose : (a) la tecnologia; (b) i prezzi degli inputs La tecnologia è sintetizzata dalla funzione di produzione Assumiamo che la produzione richieda due fattori: L (lavoro) e K (macchinari). Da cosa dipendono i costi? I prezzi dei due inputs sono w (lavoro) e p k (macchine). In concorrenza, per la singola impresa, anche questi prezzi sono dati. C t = w L p k K Il costo di produzione è la spesa per gli inputs produttivi

3 Funzione di produzione Quando ci sono due inputs la funzione di produzione ha due variabili indipendenti : Un esempio molto semplificato di funzione di produzione è: La funzione di produzione fornisce tre tipi di informazioni sulle caratteristiche della tecnologia: y = f (L, K ) (a)cosa accade alla quantità prodotta q y se si aumenta un solo input combinandolo con una quantità invariata dellaltro: produttività marginale di un fattore; (b)cosa accade alla quantità prodotta q y se si sostituisce (in parte) un input con laltro: SMST; (c)cosa accade alla quantità prodotta q y se si aumentano entrambi gli inputs (stessa proporzione): rendimenti di scala.

4 Produttività marginale (del lavoro) La produttività marginale del lavoro ( PmgL ) è laumento della produzione che si ottiene quando il lavoro impiegato aumenta di ununità (mantenendo costante limpiego dei macchinari, K) : PmgL = f(L 1, K) f(L, K) In termini generali la produttività marginale di un fattore di produzione è laumento di produzione che si ottiene dallimpiego di una unità addizionale del fattore senza variare limpiego degli altri. La produttività marginale dei macchinari (capitale) può, ad esempio, essere definita in modo analogo come PmgK = f (L, K + 1) – f (L, K)

5 SMST (Saggio marginale di sostituzione tecnica) Il saggio marginale di sostituzione tecnica ( SMST ) misura di quanto deve ridursi limpiego di un fattore quando la quantità usata dellaltro aumenta di 1 unità, a produzione costante (si noti lanalogia con il SMS del consumatore). Supponiamo che la funzione di produzione di un bene sia: y = f (K, L) = 2K + L In questo caso il SMST è -1/2, ovvero se la quantità di lavoro viene aumentata di una unità, il capitale dovrà ridursi di 1/2 unità affinché la produzione resti invariata. Ad esempio con 5 unità di K e 4 di L vengono prodotte =14 unità; per produrre la stessa quantità con +1 unità di lavoro, il capitale devessere ridotto di ½ unità (L passa da 4 a 5 e K da 5 a 4,5): - ΔK/ΔL=-1/2 Attenzione il SMST non è in genere costante come nel nostro esempio, ma varia al variare della quantità prodotta (verificate con lesempio della funzione con la radice quadrata).

6 Breve e lungo periodo La distinzione tra breve periodo e lungo periodo riguarda la possibilità per limpresa di variare tutti i fattori. BREVE PERIODO. Limpresa può variare solo la quantità di un fattore, detto fattore variabile ; la quantità dellaltro fattore, detto fisso, è data e costante. LUNGO PERIODO. Limpresa può scegliere liberamente le quantità dei due fattori, che sono perciò entrambi variabili. Sia il lavoro (L) il fattore sempre variabile. Quello fisso nel breve periodo ( K, il macchinario) verrà chiamato impianto. Nel breve periodo il prodotto può variare solo se varia il lavoro. La funzione di produzione ha una sola variabile indipendente. NB: fattore fisso e costo fisso sono due concetti differenti.

7 Input variabile e quantità prodotta Assumiamo, per esempio, una funzione di produzione del tipo: Assumiamo breve periodo, sicché limpianto è dato e K =100 PRODOTTO TOTALE L = 0 y = 0 L = 1 y = 10 L = 2 y 14.1 L = 3 y 17.3 L = 4 y = 20 L = 5 y 22.3 … La formula diventa PRODUTTIVITÀ MARGINALE DEL LAVORO L= 1 PmgL = 10 L= 2 PmgL 4.1 L= 3 Pmgl 3.2 L= 4 Pmgl 2.7 L= 5 PmgL 2.3 … Nel nostro esempio la produttività marginale è decrescente. osserviamo come aumenta il prodotto al crescere di L (il lavoro) e calcoliamo la produttività marginale (variazione del prodotto)

8 Rendimenti di scala Perché la produttività marginale è decrescente? Se i rendimenti sono costanti o decrescenti, la produttività marginale è per forza decrescente: impiegando sempre più lavoro nello stesso impianto il processo diviene via via più difficoltoso(per usare al meglio più lavoro, ci vuole un impianto più grande). Prima di rispondere vediamo cosa succede se aumentano entrambi i fattori (il che, come sappiamo, può avvenire solo nel lungo periodo). È facile verificare, usando la formula, che un raddoppio di entrambi i fattori (lavoro e macchinario) raddoppia anche la quantità prodotta. Più in generale, il prodotto varia della stessa proporzione dei due fattori. Quando si verifica questo risultato si dice che la produzione presenta rendimenti costanti di scala. Possono esserci anche funzioni di produzione che presentano rendimenti decrescenti o crescenti.

9 SMST = w / p k Il problema del produttore (minimizzazione dei costi, ovvero scelta della tecnica) Limpresa deve scegliere la combinazione ottimale dei fattori (tecnica di produzione). In questa fase considererà un dato la quantità da produrre (quella che massimizza il profitto) e sceglierà la tecnica avente il costo minore. Il suo è perciò un problema di minimizzazione dei costi. La scelta che minimizza il costo soddisfa la condizione: SMST misura di quanto deve diminuire un fattore di produzione a fronte di un aumento unitario del secondo, a parità di quantità prodotta. Il rapporto w / p k é il prezzo relativo di un fattore (il valore di mercato in termini del secondo). Questa uguaglianza è la condizione dellefficienza economica.

10 La tecnica efficiente Sia q* la quantità da produrre scelta dallimpresa. Essa è producibile tramite diverse combinazioni di K e L. Quella ottimale minimizza il costo C = wL + p k K; questa relazione, che esprime la spesa per lacquisto dei fattori produttivi, è una retta di intercetta C/p k e inclinazione w/p k. Per ogni valore di C abbiamo quindi una retta detta isocosto, ossia il luogo geometrico dei punti rappresentanti le combinazioni di L e K che hanno lo stesso costo C. Analogamente abbiamo, per ogni livello di produzione q = f(L, K), un isoquanto che rappresenta tutte le combinazioni di L e K necessarie a produrre q. Lefficienza economica: minimizzazione dei costi

11 La tecnica efficiente Possiamo rappresentare la funzione di produzione su un grafico a due dimensioni tramite una famiglia di isoquanti, ciascuno dei quali rappresenta un livello di produzione (grafico a sinistra). Analogamente possiamo rappresentare le rette di isocosto, come nel grafico a destra L 0 K q1q1 q2q2 q3q3 L 0 K C1C1 C2C2 C3C3

12 La tecnica efficiente La scelta cadrà sulla combinazione di fattori corrispondente al punto di tangenza tra lisocosto e lisoquanto corrispondente a q*. Sovrapponendo i due grafici otteniamo il risultato cercato. Se assumiamo che lisoquanto di mezzo rappresenta la quantità q*, allora la tecnica efficiente è rappresentata dalla coppia K*, L*, in corrispondenza della quale SMST = w/pk. K 0 L q* K* L*L* w/p k


Scaricare ppt "Istituzioni di Economia Politica prof. L. Ditta La funzione di produzione, Produttività marginale, SMST e rendimenti Facoltà di Giurisprudenza Università"

Presentazioni simili


Annunci Google