Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoSansone Russo Modificato 11 anni fa
1
Ottimizzazione non lineare non vincolata: Metodi iterativi di eliminazione ed interpolazione per ottimizzazione di funzione di una variabile 10 marzo 2010 MOSPE
2
Ottimizzazione non lineare non vincolata
Il problema di ottimizzazione non lineare non vincolata di funzione di una variabile viene posto nella forma: f*=min {f(x)} dove x (1) dove f (funzione non lineare) è la cosiddetta funzione obiettivo Il problema (1) è equivalente al problema: f*=-max {-f(x)} dove x (2) f ( x) - 10 marzo 2010 MOSPE
3
Metodi iterativi di discesa
La ricerca di una soluzione ottimale per un problema di ottimizzazione non lineare viene condotta utilizzando algoritmi iterativi di discesa Si tratta di metodi iterativi che percorrono una traiettoria composta da una successione di soluzioni ammissibili, effettuando ad ogni iterazione uno spostamento lungo una direzione ammissibile, in modo che il valore della funzione obiettivo per la nuova soluzione sia inferiore al valore per la soluzione precedente L’efficienza di un metodo di ricerca consiste nell’ottenere una prescelta approssimazione del punto di minimo con il minor numero possibile di tentativi 10 marzo 2010 MOSPE
4
Classificazione di metodi iterativi
Metodi di eliminazione: Ricerca illimitata Ricerca esaustiva Metodo di bisezione (dicotomico) Metodo di Fibonacci Metodo della sezione aurea I metodi di eliminazione possono essere usati anche per ottimizzazione di funzioni discontinue e non differenziabili in quanto non utilizzano la derivata della funzione obiettivo!!! Metodi di interpolazione: Quadratica Cubica Ricerca diretta di radici: Newton quasi-Newton del gradiente 10 marzo 2010 MOSPE
5
Funzione unimodale I metodi di bisezione, di Fibonacci e della sezione aurea richiedono che la funzione da minimizzare sia unimodale o sia dotata di un unico punto di minimo, su un intervallo chiuso [a,b] La funzione [a,b] xf(x) si definisce unimodale se x1<x2<x* f(x2)<f(x1) e x2>x1>x* f(x1)<f(x2) dove x* è il punto minimo della funzione. In altre parole - esiste un valore x* [a,b] tale che la funzione è strettamente decrescente per x<x* e strettamente crescente per x*>x - o viceversa 10 marzo 2010 MOSPE
6
Funzione unimodale vs funzione multimodale
10 marzo 2010 MOSPE
7
Ricerca illimitata Un metodo elementare di ricerca del punto ottimale della funzione f è basato sull’uso di passo fisso e spostamento, da un punto iniziale scelto, nella direzione favorevole (positiva o negativa). Il passo usato deve essere piccolo in relazione con l’accuratezza finale desiderata Nella ricerca illimitata (ed in tutti gli altri metodi di eliminazione) si assume che la funzione f sia unimodale. Nel caso di funzione multimodale l’intervallo di esplorazione per la funzione viene suddiviso in diverse parti in ciascuna della quali la funzione è unimodale. 10 marzo 2010 MOSPE
8
Esempio di ricerca non limitata con passo fisso
10 marzo 2010 MOSPE
9
Algoritmo (1) Inizializzazione con una stima iniziale, x1
Calcolo di f1=f(x1) Calcolo di x2=x1+s dove s è il passo prescelto Calcolo di f2=f(x2) Se f2<f1 e il problema è un problema di minimizzazione, l’ipotesi di unimodalità indica che il minimo non può trovarsi per x<x1, quindi la ricerca può essere continuata lungo i punti x3, x4… usando la ipotesi di unimodalità durante la verifica di ogni coppia dei punti. La procedura viene continuata fin quando il valore di f in un punto xi=x1+(i-1)s comincia a crescere Terminazione della procedura nel punto xi-1 10 marzo 2010 MOSPE
10
Algoritmo (1) Se all’inizio f2>f1 la ricerca deve essere svolta nella direzione opposta cioè per i punti x-2, x-3…, dove x-j=x1-(j-1)s Se f2=f1 il minimo cercato sta tra x2 e x1 e quindi il punto di minimo può essere scelto sia in x2 sia in x1 Se sia f2 sia f-2 sono più grandi di f1, questo implica che il minimo si trova nell’intervallo x-2<x<x2 10 marzo 2010 MOSPE
11
Passo accelerato Anche se la ricerca con passo fisso sembra molto semplice, la maggiore limitazione viene dal fatto della natura non limitata del regione dove si può trovare il minimo Per esempio se il punto minimo di una certa funzione f si trova a x*=50000 e, in assenza di conoscenza della sua posizione, x1 ed s vengono scelti come 0 e 0.1, la funzione f deve essere valutata volte per trovare il minimo! Per risolvere questo problema, per esempio, in ogni iterazione il passo può essere raddoppiato. Successivamente, per ottenere una sufficiente accuratezza, la procedura di base può essere applicata all’intervallo (xi-1,xi) cominciando da xi-1 o xi 10 marzo 2010 MOSPE
12
Esempio numerico di ricerca con passo fisso
Trova il minimo della funzione f=x(x-1.5) cominciando da x1=0 e s=0.05 i s xi= x1 +(i-1)s fi fi>fi-1 1 - 0.0 2 0.05 No 3 0.10 -0.140 16 0.75 17 0.80 -0.560 Si 10 marzo 2010 MOSPE
13
Esempio numerico di ricerca con passo accel.
Trova il minimo della funzione f=x(x-1.5) cominciando da x1=0 e s=0.05 i s xi= x1 +s fi fi>fi-1 1 - 0.0 2 0.05 No 3 0.10 -0.140 4 0.20 -0.260 5 0.40 -0.440 6 0.80 -0.560 7 1.60 +0.160 Si 10 marzo 2010 MOSPE
14
Ricerca esaustiva La ricerca esaustiva può essere usata per la soluzione dei problemi in cui l’intervallo in cui si trova il minimo è finito. Si denotano con xs ed xf rispettivamente il punto iniziale e finale dell’intervallo di ricerca Il metodo consiste nella valutazione (simultanea) della funzione obiettivo in un determinato numero di punti distribuiti uniformemente nell’intervallo (xs, xf) e riducendo intervallo di incertezza usando l’assunzione di unimodalità 10 marzo 2010 MOSPE
15
Metodo di bisezione (dicotomico)
Nel metodo di bisezione esattamente la metà dell’intervallo corrente viene scartata in ogni iterazione Il metodo richiede tre punti iniziali e due punti sperimentali in ogni iterazione della procedura 10 marzo 2010 MOSPE
16
Algoritmo Suddivisione dell’intervallo di incertezza L0=[a,b] in 4 parti uguali, con x0 al centro Valutazione della funzione obiettivo f nei punti x0, x1 ,x2 Se: f(x2)>f(x0)>f(x1) cancella [x0,b] e sostituisci x0 = x1 e b=x0 f(x2)<f(x0)<f(x1) cancella [a,x0] e sostituisci x0 =x2 e a=x0 f(x1)>f(x0) e f(x2)> f(x0) cancella [a,x1] e [x2,b] e sostituisci a=x1 e b=x2 Controlla se il nuovo intervallo L=b-a soddisfa il criterio di convergenza L<=epsilon; se converge finisci la procedura se no torna al punto 1 10 marzo 2010 MOSPE
17
Esempio numerco di metodo di bisezione
Trovare il minimo della funzione f=x(x-1.5) nell’intervallo [0,1] con epsilon=0.1 e epsilon=0.01 10 marzo 2010 MOSPE
18
Metodo di Fibonacci Il metodo di Fibonacci può essere applicato per la ricerca del minimo di una funzione di una variabile anche non continua. Come tanti altri metodi di eliminazione esistono le seguenti limitazioni per quanto riguarda l’uso del metodo: L’intervallo iniziale di incertezza deve essere noto La funzione obiettivo deve essere unimodale in questo intervallo La soluzione esatta non può essere trovata – solo un intervallo finale di incertezza Il numero di valutazioni della funzione o la risoluzione deve essere specificato all’inizio della procedura 10 marzo 2010 MOSPE
19
Numeri di Fibonacci Il metodo usa la sequenza di numeri di Fibonacci Fn, definiti tramite la relazione ricorsiva: F0=F1=1 Fn=Fn-1+Fn-2 n=2,3,4,… che determina la successione: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,… L’algoritmo si basa sulla valutazione della funzione obiettivo f in corrispondenza di una successione finita di n punti, e ricava un intervallo di incertezza, di ampiezza decrescente con n, all’interno del quale si colloca la soluzione ottimale. 10 marzo 2010 MOSPE
20
Algoritmo (1) Inizializzazione con due punti di tentativo x1 e x2 posti a distanza L2*=Fn-2/Fn·L0 dagli estremi dell’intervallo L0=[a,b] dove n è il numero totale di valutazioni: x1=a+ L2*=a+ Fn-2/Fn·L0 x2=b-L2*=b- Fn-2/Fn·L0 =a+ Fn-1/Fn·L0 (se un punto è posto alla distanza Fn-2/Fn·L0 da un estremo dell’intervallo, sarà posto alla distanza Fn-1/Fn·L0 dall’altro estremo) Sulla base di assunzione di unimodalità una parte dell’intervallo viene scartata; il rimanente intervallo di incertezza ha lunghezza L2 definita: L2=L0-L2*=L0(1-Fn-2/Fn)= Fn-1/Fn·L0 e contiene uno dei punti di tentativo alla distanza: L2*= Fn-2/Fn·L0= Fn-2/Fn-1·L2 da un lato e L2 -L2*= Fn-3/Fn·L0= Fn-3/Fn-1·L2 dall’altro lato dell’intervallo L2 10 marzo 2010 MOSPE
21
Algoritmo (2) Si procede con il terzo tentativo x3 nell’intervallo L2 alla distanza: L3*= Fn-3/Fn·L0= Fn-3/Fn-1·L2 da ogni lato dell’ intervallo L2 Usando la condizione di unimodalità l’intervallo di incertezza viene ridotto all’intervallo L3: L3=L2-L3*=L2- Fn-3/Fn-1·L2= Fn-2/Fn-1·L2 = Fn-2/Fn·L0 Il processo viene continuato con: Lj*= Fn-j/Fn-(j-2)·Lj-1 Lj = Fn-(j-1)/Fn·L0 Dopo un numero di passi uguale a j il rapporto tra l’intervallo determinato e quello residuo è uguale a: Lj /L0 = Fn-(j-1)/Fn Per j=n abbiamo: Ln /L0 = F1/Fn =1/Fn 10 marzo 2010 MOSPE
22
Esempio numerico di metodo di Fibonacci
Trova un minimo di f(x)=0.65-[0.75/(1+x2)]-0.65xtan-1(1/x) su intervallo [0,3] usando n=6 n=6, L0=3 L2*=Fn-2/Fn·L0=5/13·3= x1= f(x1)= x2= = f(x2)= f(x1)<f(x2) [x2,3] viene scartato x3=0+(x2-x1)= f(x3)= f(x1)>f(x3) [x1, x2] viene scartato (…..) L0 L2* L2* L2 x2 x1 x3 10 marzo 2010 MOSPE
23
Metodo della sezione aurea
Il metodo della sezione aurea è simile al metodo di Fibonacci eccetto che nel metodo di Fibonacci il numero totale di tentativi viene specificato all’inizio per determinare la posizione iniziale dei punti; nel metodo della sezione aurea si assume che il numero di tentativi sia molto grande (n∞) È possibile dimostrare che con n∞ abbiamo: limn∞Fn-1/Fn=1/π10.618 dove π11.618 è una radice dell’equazione x2=x+1 e costituisce la sezione aurea, già nota nell’antica Grecia Nel metodo i punti iniziali x1 e x2 vengono scelti in corrispondenza di: L2*=Fn-2/Fn·L0 =Fn-2/Fn-1·Fn-1/Fn·L0=L0/π12=0.382L0 10 marzo 2010 MOSPE
24
Sezione aurea La sezione aurea, nell'ambito dell‘arte e della matematica, indica il rapporto fra due grandezze disuguali, delle quali la maggiore è medio proporzionale tra la minore e la somma delle due, mentre lo stesso rapporto esiste anche tra la grandezza minore e la loro differenza. In formule, indicando con a la lunghezza maggiore e con b la lunghezza minore, vale la relazione: (a+b) : a = a : b = b : (a-b) 10 marzo 2010 MOSPE
25
Arco di Traiano e sezione aurea
10 marzo 2010 MOSPE
26
Confronto dei metodi di eliminazione
Metodo Error: 1/2·Ln/L0<=0.1 Error: 1/2·Ln/L0<=0.01 Ricerca esaustiva n>=9 n>=99 Metodo di bisezione n>=7 n>=13 Metodo di Fibonacci n>=4 Metodo della sezione aurea n>=5 n>=10 10 marzo 2010 MOSPE
27
Metodo di Fibonacci – sviluppo dell’algoritmo in Matlab
10 marzo 2010 MOSPE
28
Ricerca diretta di radici
Metodo di Newton Metodo quasi Newtoniano Metodo della secante 10 marzo 2010 MOSPE
29
Convergenza (1) Convergenza (def. 1): La sequenza xi delle iterazioni converge alla soluzione α se: Convergenza (def. 2): La sequenza xi delle iterazioni converge alla soluzione α se, dato un ε>0 qualsiasi, esiste un intero n0 tale per cui con n≥n0 si ha: Convergenza lineare: La sequenza xi delle iterazioni converge linearmente alla soluzione α se esiste una costante c con 0<c<1 ed un intero n≥0 tali per cui: 10 marzo 2010 MOSPE
30
Convergenza (2) Convergenza superlineare: La sequenza xi delle iterazioni converge superlinearmente alla soluzione α se, per qualche sequenza cn che converge a 0, esiste un intero n≥0 tali per cui: Convergenza di ordine p: La sequenza xi delle iterazioni converge con ordine p ≥ 1 alla soluzione α se, per qualche c>0, esiste un intero n ≥ 0 tale per cui: p è anche detto ordine di convergenza del metodo. 10 marzo 2010 MOSPE
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.