La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

GUM Guida ISO allespressione dellincertezza di misura (GUM) – ISO Guide to the Expression of Uncertainty in Measurement Esercizi.

Presentazioni simili


Presentazione sul tema: "GUM Guida ISO allespressione dellincertezza di misura (GUM) – ISO Guide to the Expression of Uncertainty in Measurement Esercizi."— Transcript della presentazione:

1 GUM Guida ISO allespressione dellincertezza di misura (GUM) – ISO Guide to the Expression of Uncertainty in Measurement Esercizi

2 Incertezza di misura Ad ogni misura o stima va associato un valore di incertezza Approcci diversi conducono alla stessa conclusione: Il valore vero non esiste, o Se il valore vero esiste è sconosciuto Si utilizzano funzioni di distribuzione di probabilità per descrivere il risultato di una misura

3 Incertezza di misura Lincertezza può essere stimata: Per mezzo di valutazioni basate sullesperienza (storico di dati, analisi della documentazione tecnica, esperienze precedenti …) [CATEGORIA B] FDP ipotizzata Per mezzo di misure ripetute dello stesso misurando (analisi statistica dei risultati) [CATEGORIA A] FDP misurata Per mezzo della propagazione dellincertezza, nel caso di misure indirette [incertezza combinata] FDP combinata

4 Propagazione dellincertezza (GUM) FORMA SEMPLIFICATA: Viene utilizzata quando i parametri sono fra loro indipendenti (non vi sono incertezze correlate)

5 Approccio basato sulla GUM 1) IDENTIFICARE LEQUAZIONE RISOLVENTE - controllare lapplicabilità dellapproccio semplificato 2) IDENTIFICARE LE GRANDEZZE COINVOLTE - categoria, incertezza, coefficienti di influenza 3) CALCOLARE IL VALORE STIMATO 4) CALCOLARE LINCERTEZZA COMBINATA - propagare le incertezze 5) CALCOLARE LINCERTEZZA ESTESA - scegliere un opportuno fattore di copertura, adeguato al livello di fiducia richiesto 6) SCRIVERE IL RISULTATO IN FORMA RIGOROSA G=704±38 MPa (P=99%) oppure G=704±38 MPa (k=2.58) oppure G=704 MPa U 99% (G)=38 MPa Pk 60% % %2.58

6 Analisi approfondita: UMF UMF: Fattore di amplificazione (Uncertainty Magnification Factor) Indica di quanto viene amplificata lincertezza di ciascuna grandezza in ingresso in funzione dellequazione che descrive il fenomeno. DIPENDE SOLO DALLEQUAZIONE SCELTA Utile nellanalisi che precede lacquisto di un trasduttore, in modo da identificare le grandezze più (UMF>1) o meno (UMF<1) critiche

7 Analisi approfondita : UPC UPC: Uncertainty Percentage Contribution Indica quanta dellincertezza combinata dipende dallincertezza della grandezza in ingresso Tiene conto sia dellequazione che rappresenta il modello sia delle incertezze realmente coinvolte Utile per controllare se vi siano alcune grandezze la cui misura vada migliorata

8 Esercizio 2: Altezza di un edificio Dalle misure di un edificio ottenute utilizzando un odometro avente diametro = 300 mm e 100 divisioni ed un inclinometro, avente passo pari a 1/10 di grado, si sono ottenuti i seguenti valori ϑ 1 =61.5° ϑ 2 =-8.0° L=15m h 1 =Ltgϑ 1 h 2 =Ltgϑ 2 H=h 1 +h 2 H=L(tgϑ 1 +tgϑ 2 ) Ricavare laltezza delledificio come misura indiretta, scrivendo il risultato in forma rigorosa, riportando lincertezza di misura estesa al 95% ϑ1ϑ1 ϑ2ϑ2 L H H=29.73 ± 0.14 m (k=1.96)

9 Esercizio 2: Altezza di un edificio Equazione risolvente: H = L(tg|ϑ 1 |+tg|ϑ 2 |) Grandezze coinvolte: - L - distanza – incertezza di categoria B - ϑ 1 – angolo – incertezza di categoria B - ϑ 2 – angolo – incertezza di categoria B

10 Esercizio 2: Altezza di un edificio Grandezze coinvolte: L=15m [m] incertezza di categoria B misurata per mezzo di un odometro (diametro = 300 mm, 100 divisioni) 1 division= 300mm/100=9.4mm=0.0094m si assume una distribuzione uniforme con semiampiezza a pari alla divisione più piccola a x La semiampiezza a sarebbe dovuta essere uguale a metà della divisione più piccola, ma come regola pratica, se la misura è poco accurata si usa lampiezza intera della divisione più piccola.

11 Esercizio 2: Altezza di un edificio Grandezze coinvolte: ϑ 1 =61.5°=1.073 rad [rad] incertezza di categoria B misurata per mezzo di un inclinometro (divisione = 1/10 di grado) 1 divisione = = rad si assume una distribuzione uniforme con semiampiezza a pari alla divisione più piccola Lo stesso per ϑ 2 = -8° = rad a x

12 Esercizio 2: Altezza di un edificio Coefficienti di influenza =2.0 =66 m =15 m

13 Esercizio 2: Altezza di un edificio INCERTEZZA COMBINATA, INCERTEZZA ESTESA e RISULTATI DELLA MISURA H = mU 95% (H) = 0.14m H = (29.73 ± 0.14) m (k = 1.96) H = (29.73 ± 0.14) m (P = 95%) Analisi critica: UMF, UPC Risultati della misura H29.73m u(H)0.07m U(H)0.14m k1.96 u(H)/H0.2% NomeUMFUPC L % θ % θ %

14 Incertezza di misura Ad ogni misura o stima va associato un valore di incertezza Approcci diversi conducono alla stessa conclusione: Il valore vero non esiste, o Se il valore vero esiste è sconosciuto Si utilizzano funzioni di distribuzione di probabilità per descrivere il risultato di una misura

15 Compatibilità fra misure diverse della stessa grandezza Misure diverse della stessa grandezza risultano compatibile, con un certo livello di fiducia, quando i loro intervalli fiduciari si sovrappongono Es. velocità della mia automobile misurata per mezzo di un segnale GPS: 72 ± 1km/h (P = 95%) velocità della mia automobile misurata per mezzo di un tachimetro 75±7km/h (P=95%) velocità della mia automobile misurata dalla polizia 80±8km/h (P=95%) i risultati delle tre misure si riferiscono allo stesso misurando? Le tre misure sono COMPATIBILI?

16 Compatibilità fra misure diverse della stessa grandezza Sì, le misure sono compatibili con un livello di fiducia del 95%, perché esiste un intervallo (in rosso) in comune fra le tre misure Si può affermare che le tre misure non sono diverse, con un livello di fiducia del 95% Un ulteriore esempio: il sistema di controllo di sistema di serraggio indica il valore di F = 89N con tolleranza al 95% data, pari a 1 N la forza dello stesso sistema di serraggio viene misurata con misure ripetute utilizzando una cella di carico, ottenendo il seguente risultato: F = {89,91,90,92,89,89,91} N le due misure sono COMPATIBILI al 99%?

17 Compatibilità fra misure diverse della stessa grandezza Un ulteriore esempio: F = 89 N con tolleranza al 95% data, pari a 1 N Incertezza estesa al 95% = 1 N: se si suppone una distribuzione normale, si può calcolare lincertezza standard (k=1) dividendo per k 95% =1.96 => u(F) = 0.51 N => => U 99% (F) = k 99% u(F) = 2.58 x 0.51 N = 1.3 N intervallo di fiducia = {87.7 N; 90.3 N} misure ripetute F = {89,91,90,92,89,89,91} N media: F = N; deviazione standard: σ = N numero di campioni: n = 7 => v = n-1 = 6 gradi di libertà Per estendere lincertezza di misure ripetute con n k = t 99%,v = 3.71 => U 99% (F) = 1.7 N intervallo di fiducia: {88.4 N; 91.8 N} Sì, le misure sono compatibili con un livello di fiducia del 99%: i due intervalli si sovrappongono fra 88.4 N e 90.3 N

18 Esercizio 3: Punta su un disco Viene chiesto di misurare il carico applicato ad una punto che striscia su un disco che ruota in una prova volta a determinare il coefficiente di attrito fra i due oggetti, in funzione del materiale di cui sono costituiti. Il carico viene esercitato per mezzo di un attuatore idraulico, utilizzando un moltiplicatore di pressione rappresentato in figura. Sapendo che il diametri sono stati misurati utilizzando un calibro ventesimale e considerando le pressioni in figura, quale trasduttore è il più adatto allo scopo, sapendo che hanno lo stesso prezzo? Quale incertezza può essere associata alla misura dal carico? Trasduttore 1: fondo scala = 300 kPa, incertezza complessiva = 1% FS Trasduttore 2: fondo scala = 10 MPa, incertezza complessiva 2% FS p 2 200kPa p 1 =p 2 (d 2 /d 1 )² d2=200mm d1=40mm d 0 =10mm

19 Esercizio 3: Punta su un disco Ipotesi A: - si utilizza il trasduttore 1 per misurare p2 con unincertezza di 6 kPa Ipotesi B: - si utilizza il trasduttore 2 per misurare p1 con unincertezza di 100 kPa Risultato della misura H 393 N u(H) 8 N U(H) 16 N k 1.96 u(H)/H 2.1% Risultato della misura H 393 N u(H) 12 N U(H) 23 N k 1.96 u(H)/H 3.1% La miglior soluzione è data dallipotesi B, perché lincertezza che ne deriva è inferiore Cosa accadrebbe se lincertezza relativa del trasduttore 1 fosse pari a 1% FS ?


Scaricare ppt "GUM Guida ISO allespressione dellincertezza di misura (GUM) – ISO Guide to the Expression of Uncertainty in Measurement Esercizi."

Presentazioni simili


Annunci Google