Introduzione.

Slides:



Advertisements
Presentazioni simili
EQUAZIONI DI 2° GRADO.
Advertisements

(se a = 0 l’equazione bx + c = 0 è di primo grado)
La forma normale di un’equazione di secondo grado è la seguente:
Equazioni di 2° grado.
Calcolo letterale.
EQUAZIONI DI SECONDO GRADO
Classe II a.s. 2010/2011 Prof.ssa Rita Schettino
Definizione La disequazione è un’uguaglianza che è verificata per certi intervalli di valore. Risolvere una disequazione significa trovare gli intervalli.
IPSSCT V. Bosso a.s Francesca Alloatti EquazioneSPURIA EquazioneMONOMIA EquazionePURA EQUAZIONI II GRADO Una equazione è un ’ uguaglianza tra.
2a + 10b abx2 3a + 1 y 2 a + 1 x + 2y a − Espressioni algebriche
I sistemi di equazioni di I grado Un sistema di equazioni DEFINIZIONE Un sistema di equazioni è un insieme di due o più equazioni, tutte nelle stesse.
I Polinomi Prof.ssa A.Comis.
Disequazioni in una variabile. LaRegola dei segni La disequazione A(x) · B(x) > 0 è soddisfatta dai valori di per i quali i due fattori A(x) e B(x) hanno.
1 Prof.ssa A.Comis. 2 Introduzione Definizione Classificazione Principi di equivalenza Regole per la risoluzione.
NUMERI RELATIVI I numeri relativi comprendono i numeri positivi, negativi e lo 0 Esempio: +10, -5, +3, 0, -2 I numeri relativi si possono trovare all’interno.
Equazioni di 2°grado Prof.ssa A.Comis.
= 2x – 3 x Definizione e caratteristiche
La parabola e la sua equazione
x2 – 4x + 1 x – 3 6x 5y2 ; x2 – 4x + 1 x – 3 x – 3 ≠ 0 x ≠ 3
(se a = 0 l’equazione bx + c = 0 è di primo grado)
LA PARABOLA COSTANZA PACE.
Proposta di soluzione per trovare le incognite in una formula
L’integrale indefinito
La circonferenza nel piano cartesiano
Equazioni differenziali - introduzione
Le equazioni di II°Grado
Le Equazioni Lineari Definizione:
x : variabile indipendente
Le disequazioni DEFINIZIONE DISEQUAZIONI EQUIVALENTI
La circonferenza nel piano cartesiano
(7x + 8x2 + 2) : (2x + 3) 8x2 + 7x + 2 2x + 3 8x2 + 7x + 2 2x + 3 4x
4 < 12 5 > −3 a < b a > b a ≤ b a ≥ b
Equazioni di 2° grado.
x : variabile indipendente
Raccogliamo x al primo membro e 2 al secondo:
TEORIA EQUAZIONI.
ESPRESSIONE LETTERALE
Equazioni differenziali
Insiemi di punti: altre caratteristiche
Equazioni e disequazioni
MATEMATICA III.
Le trasformazioni nel piano cartesiano
MATEMATICA I.
Identità ed equazioni.
I MONOMI.
L’equazione dell’ellisse
Equazioni spurie: Si dicono equazioni spurie quelle equazioni
Parabola a cura Prof sa A. SIA.
Scomposizione dei polinomi
LE DISEQUAZIONI DI SECONDO GRADO
I RADICALI Definizione di radicali Semplificazione di radicali
Codicfiche Interi Complemento alla base.
I numeri relativi DEFINIZIONE. Si dicono numeri relativi tutti i numeri interi, razionali e irrazionali dotati di segno (positivo o negativo). ESEMPI Numeri.
IPSART “R. Drengot” – Aversa (CE) – Prof. Nunzio ZARIGNO
Le espressioni algebriche letterali
Equazioni di 2°grado Introduzione.
Equazioni.
EQUAZIONI DI 1° GRADO.
EQUAZIONI DI 2° GRADO – Equazione PURA
IPSART “R. Drengot” – Aversa (CE) – Prof. Nunzio ZARIGNO
EQUAZIONI DI SECONDO GRADO
L’EQUAZIONE DI UNA RETTA
I sistemi di equazioni di I grado
Equazioni di 2°grado Prof.ssa A.Comis.
Modello matematico per la risoluzione dei problemi
Le Equazioni di 1°grado Prof.ssa A.Comis.
LE DISEQUAZIONI DI PRIMO GRADO
I sistemi di equazioni di 1° grado
La circonferenza Esercitazioni Dott.ssa Badiglio S.
I radicali Esercitazioni Dott.ssa Badiglio S..
Transcript della presentazione:

Introduzione

Forma normale o canonica Una equazione si 2° grado (il più alto grado dell’incognita è 2)si dice scritta in forma normale o canonica se è nella forma ax2+bx+c=0 con a, b e c numeri reali e a≠0 (o si ridurrebbe ad un’eq. di primo grado) Ad esempio 3x2+2x-5=0 è una equazione di 2° grado scritta in forma normale (con coefficienti a=3, b=2 e c=-5) In una equazione scritta in forma normale a è detto coefficiente del termine di 2° grado, b è detto coefficiente del termine di 1° grado il terzo termine è detto termine noto (non essendo associato ad un valore variabile)

Riduzione a forma normale Se una equazione non è scritta in forma normale il primo passo da effettuare è quello di riportarla in tale forma attraverso semplici operazioni e trasporto di tutti i termini al 1° membro dell’uguaglianza Esempio: 4x-2=3(x2–x)↔ 4x-2=3x2–3x↔ -3x2+7x-2=0

Soluzioni di un’equazione Le soluzioni di una equazione di 2° grado (note anche come zeri o radici) sono quei valori che sostituiti alla incognita x rendono l’equazione una identità. x=1 e x=2 sono soluzioni per l’equazione x2– 3x+2=0 infatti 12–3+2=0 e 22–6+2=0

Discriminante Si chiama discriminante di una equazione di 2° grado, e si indica con Δ, il numero b2-4ac

QUADRO RIASSUNTIVO  > 0 soluzioni reali e distinte x1 x2   = 0 soluzioni reali e coincidenti x1=x2   < 0 equazione impossibile in  6

Tipologia soluzioni Se Δ>0 le soluzioni sono 2, reali e distinte S={(-b+√Δ)/2a, (-b-√Δ)/2a} Se Δ=0 le soluzioni sono 2 reali coincidenti S={-b/2a} Se Δ<0 non esistono soluzioni reali S={Ø} Se a e c sono discordi il discriminante è sicuramente positivo (non vale il viceversa)

Formula risolutiva Le soluzioni di un’equazione di 2° grado si ricavano dalla formula Che si può anche esprimere esplicitamente La formula risolutiva è applicabile anche alle equazioni incomplete Nel caso b sia pari conviene applicare la formula ridotta

Esempio 1

Esempio 2

Esempio 3

Esempio 4

Equazioni incomplete Se manca il termine di primo grado o il termine noto o entrambi l’equazione si dice incompleta Le equazioni incomplete si suddividono in Spurie Pure Monomie

Equazioni spurie Una equazione di secondo grado in cui manchi il termine noto (cioè quella in cui è c=0) si dice pura Una equazione spuria ha 2 soluzioni di cui una è sempre 0 e l’altra –b/a ( nell’esempio 0 e -2)

Equazioni pure Una equazione di secondo grado in cui manchi il termine di 1° grado (cioè quella in cui è b=0) si dice spuria Una equazione spuria ha 2 soluzioni opposte ±√(-c/a) (nell’esempio ±2) se a e c sono discordi. Non ha soluzioni se a e c sono concordi

Monomie Una equazione di secondo grado in cui manchi il termine di 1° grado e il termine noto (cioè quella in cui è a=b=0) si dice monomia Una equazione spuria ha 2 soluzioni (coincidenti) entrambe uguali a zero

Casi particolari In certi casi ci si può trovare di fronte al prodotto di più polinomi di grado minore o uguale a 2 uguagliato a zero: in tal caso non è conveniente eseguire le operazioni, ma, al contrario, scomporre l’equazione nelle diverse equazioni sfruttando la proprietà dell’annullamento del prodotto

Esempio 5

Equazioni frazionarie Nelle equazioni frazionarie, occorre: Scomporre i denominatori Imporre i diversi denominatori diversi da 0 (scartare le radici che li annullano) effettuare il m.c.m. dei denominatori Ridurre in forma normale eliminando i denominatori

Esempio 6

Equazioni a coefficienti letterali Nel caso nell’equazione compaiano lettere occorre verificare che Il loro valore Non renda il discriminante negativo (condizione di realtà) Non azzeri alcun denominatore (condizione di possibilità) Nel caso si annulli il coefficiente del termine di 2° grado si avrà una sola soluzione Questo procedimento si chiama discussione dell’equazione

Esempio 7

Esempio 8

Relazioni tra coefficienti e soluzioni di equazioni di 2° grado Tra i coefficienti e le soluzioni di una equazione di 2° grado con Δ≥0 esistono le relazioni

Relazioni tra coefficienti e soluzioni di equazioni di 2° grado Per definizione x1 e x2 sono soluzioni dell’equazione (x-x1)(x-x2)=0 e quindi di x2-(x1+x2)x+x1x2 Viceversa 2 numeri ci cui si conosca somma e prodotto sono soluzioni di x2-sx+p dove s e p sono somma e prodotto dei numeri dati Il trinomio ax2+bx+c, se ha soluzioni, si può scomporre come a(x-x1)(x-x2) se Δ>0 oppure come a(x- x1)2=a[x+b/(2a)]2 se Δ=0

Teorema di Cartesio a b c p=c/a s= -b/a x1 x2 + - Se tutti i coefficienti hanno lo stesso segno le soluzioni sono negative Se solo il coefficiente del termine di 1° grado è negativo le soluzioni sono positive Se solo il coefficiente del termine di 2° grado è positivo le soluzioni sono discordi e quella maggiore in valore assoluto è positiva Se solo il termine noto è negativo le soluzioni sono discordi e quella maggiore in valore assoluto è negativa a b c p=c/a s= -b/a x1 x2 + -

Esempio 9 Data l’equazione 2x2-3x+1 determinare somma e prodotto delle radici senza risolvere l’equazione s=-b/a=3/2 p=c/a=1/2

FORMULE IMPORTANTI CONDIZIONE RICHIESTA FORMULA DA IMPORRE Soluzioni reali e distinte  = b2 -4ac > 0 Soluzioni reali e coincidenti  =b2 -4ac = 0 Soluzioni complesse o equazione impossibile in   =b2 -4ac < 0 Somma delle radici s = m Prodotto delle radici p = n Soluzioni opposte x1=-x2 x1+ x2 = Soluzioni reciproche Somma dei quadrati delle radici x12+x22=q Somma dei cubi delle radici x13+x23=q 28