L S A T A R I O D N E O E L I H C L C E L & R L O O E I A N P L O P I

Slides:



Advertisements
Presentazioni simili

Advertisements

LE CONICHE Con sezione conica si intende una curva piana che sia luogo dei punti ottenibili intersecando la superficie di un cono circolare retto con un.
LICEO SCIENTIFICO G. ASELLI
L’ IPERBOLE.
Le coniche Elena tarantino 3°e Marzo 2011.
Funzioni di due variabili
DIDATTICA A DISTANZA “CARRELLATA” SULLE CONICHE CON ESERCITAZIONI
L’iperbole Teoria e laboratorio
Oggi le ... n ... comiche.
CIRCONFERENZA ELLISSE PARABOLA IPERBOLE Un po’ di storia
Prof. Valerio Muciaccia
Storia delle coniche a cura di: Caruso Angela.
Presentazione fatta da Bonazza & Peli
Le coniche Borghesi Mirko & Longhi Andrea.
GEOMETRIA IPERBOLICA.
Definizione e caratteristiche
Le sezioni coniche di Apollonio e i luoghi geometrici di Descartes
Elementi di Matematica
Elementi di Matematica
Liceo scientifico “G.Aselli” classe III E anno scolastico
LA PARABOLA PREREQUISITI DISTANZA TRA DUE PUNTI
LA PARABOLA.
OTTICA: riflessione La riflessione può essere pensata, nel modello corpuscolare della luce, come il “rimbalzo” di una sfera rigida contro una parete elastica.
Le macchine Matematiche
come sezioni di cono circolare
GEOMETRIA SOLIDA o STEREOMETRIA
LE CONICHE                                       .
Le coniche Storia e applicazioni Di Anna Brambilla 3°E.
Laboratorio: le coniche e le loro applicazioni
LE CONICHE.
Parabola Dato un punto F del piano F d ed una retta d
Il Giardino di Archimede Oltre il compasso
Le Coniche dalle origini ai giorni nostri
Curve & Coniche Francesca Serato 3^ ASo.
GEOMETRIA EUCLIDEA o RAZIONALE
??? ??? ??? La parabola Prova ??? ??? ???.
Fabrizio Gay – corso di fondamenti e applicazioni di geometria descrittiva aa CURVE e SUPERFICIE 1: Modelli matematico e categorie comuni (morfologia.
… LE CONICHE ….
CONICHE 1. coniche come “luoghi solidi” 1.1 le coniche di Menecmo
Lo studio delle coniche nel tempo
F. Gay, Università IUAV di Venezia, Corso di Laurea in Scienze dellArchitettura - Modulo coordinato di rappresentazione 1 – aa Curve e superficie.
Curve e superficie prima parte: coniche nel piano e nello spazio
LA PARABOLA.
LE CONICHE di LUCCISANO GABRIELE E FERRARO LUCIANO
× × = 1 ESEMPI DI LUOGHI GEOMETRICI Luoghi geometrici
Luogo geometrico Definizione: un luogo geometrico di punti è l'insieme di tutti e soli i punti che soddisfano una certa proprietà p (detta caratteristica.
CONICHE 1. coniche come “luoghi solidi”
La geometria analitica
LE MACRO.
Sezioni coniche.
Sezioni coniche Schemi riassuntivi, definizioni e cenni storici
Equazione di un luogo geometrico nel piano cartesiano
La Parabola Simone Pasetto Cl. 3^Bm. 1) La parabola come sezione conica  Innanzitutto definiamo la parabola: essa è un luogo geometrico in cui tutti.
GEOMETRIA PIANA: ASSIOMI E POSTULATI
Proff. Cornacchia - De Fino
Le funzioni matematiche e il piano cartesiano
Le Coniche.
La circonferenza e l’ellisse La sezione conica è l’intersezione di un piano con un cono. La sezione cambia a seconda dell’inclinazione del piano. Se il.
L’iperbole l'iperbole1IISS "Medi" - Galatone prof. Giuseppe Frassanito.
IL PIANO CARTESIANO E LA RETTA
IISS "E. Medi" - Galatone Prof. Giuseppe Frassanito a.s. 2012/2013
CONICHE.
1. Le coordinate di un punto su un piano Le coordinate di un punto su un piano 2. La lunghezza e il punto medio di un segmento La lunghezza e il punto.
1IISS "E. Medi" - Galatone prof. Giuseppe Frassanito a.s. 2012/2013.
Luoghi di punti In geometria il termine
I solidi e la geometria nello spazio
La Circonferenza. LA CIRCONFERENZA Assegnato nel piano un punto C detto Centro, si chiama circonferenza la curva piana con i punti equidistanti da C.
Se il piano è perpendicolare (ortogonale) all’altezza del cono abbiamo la CIRCONFERENZA! LA CIRCONFERENZA COME LUOGO GEOMETRICO: la circonferenza.
Transcript della presentazione:

L S A T A R I O D N E O E L I H C L C E L & R L O O E I A N P L O P I Z I A

In geometria analitica con il termine CONICA si intende genericamente una curva piana che sia luogo dei punti ottenibili intersecando la superficie di un cono circolare retto con un piano. L’equazione generale che rappresenta le coniche è: 𝑎 𝑥 2 +𝑏𝑥𝑦+𝑐 𝑦 2 +𝑑𝑥+𝑒𝑦+𝑓=0

Gli albori Il primo matematico ad occuparsi  delle sezioni coniche fu Menecmo (375-325 a.C), un matematico greco discepolo di Platone maestro di  Alessandro Magno.   Inizialmente una sezione conica era definita come l’intersezione di un cono circolare retto con un piano perpendicolare alla generatrice del cono: si ottiene infatti una parabola se l’angolo al vertice è retto, un’ellisse se è acuto, un’iperbole se è ottuso.

La sistemazione razionale della trattazione delle coniche avvenne con Apollonio di Perga (c. 262-190 a.C.), detto il Grande Geometra, che consolidò ed approfondì risultati nell’opera Le Coniche. Apollonio fu il primo ad attribuire i nomi di ellisse, parabola, ed iperbole alle coniche. Tali nomi traggono origine dal confronto di due grandezze caratteristiche di ciascuna curva. Ellisse :“mancanza”, iperbole "andare oltre" e parabola, "mettere accanto".

Apollonio dimostrò che non era necessario prendere sezioni perpendicolari a un elemento del cono, e che da un unico cono era possibile ottenere tutte e tre le varietà di sezioni coniche variando l’inclinazione del piano di intersezione.

Il Rinascimento Un campo in cui le coniche rivestirono una notevole importanza fu l’arte, principalmente durante il Rinascimento e il Barocco. Nel Rinascimento le coniche si ritrovano nelle forme prospettiche di pittori e architetti. Nel XV secolo lo studio delle Coniche di Apollonio sarà anche di guida a Keplero (1571- 1630) per la formulazione delle tre leggi sul moto dei pianeti che portano il suo nome. Keplero formulò per le coniche formavano un insieme privo di interruzioni o salti.

L'idea che la parabola abbia due fuochi di cui uno improprio, cioè all'infinito, è dovuta a Keplero, così come il termine fuoco (dal latino focus, focolare, derivante dalla proprietà fisica già nota ad Archimede, che utilizzò contro le navi romane che assediavano Siracusa, per cui uno specchio parabolico concentra i raggi paralleli provenienti dal sole in un punto che è il fuoco geometrico).

Un'altra importante applicazione è dovuta a Galileo (1564- 1642), il quale dimostrò che il moto di un proiettile ha come traiettoria una parabola. Inoltre le coniche trovarono importanti applicazioni nel campo dei fenomeni ondulatori. Per la legge della riflessione della luce, un paraboloide rotondo, cioè una superficie ottenibile facendo ruotare di un giro completo una parabola attorno al proprio asse presenta particolari proprietà che gli permettono di essere utilizzato come potente telescopio, come riflettore, come antenna per le comunicazioni spaziali, come radio telescopi.

XVII si sviluppò una visione unitaria delle coniche come proiezione del cerchio su di un altro piano (Desargues 1593-1662). Questo è il primo passo verso quello studio organico della geometria proiettiva intrapreso poi da Poncelet (1822). I risultati ottenuti da Apollonio per via sintetica, relativi alle proprietà delle coniche verranno poi raggiunti, circa 1800 anni più tardi grazie all'introduzione di nuovi metodi algebrici basati sulle coordinate cartesiane, ad opera di Cartesio e Fermat, che permisero di risolvere problemi e verificare proprietà in modo più semplice, anche se forse meno affascinante.

Nell’opera Géométrie, Cartesio derivò l’equazione generica di una conica passante per l’origine, che rappresentava il punto di vista più unitario che fosse mai stato applicato all’analisi delle sezioni coniche. Cartesio specificò le condizioni cui dovevano soddisfare i coefficienti perché la conica fosse una retta, una parabola, un’ellisse o un’iperbole. In seguito, grazie all’opera di Fermat, si dimostrò che l’equazione di una conica generica è un’equazione algebrica di secondo grado in x e y. 𝒚=𝒂 𝒙 𝟐

Contemporaneamente Blaise Pascal (1623-1662) scrisse il “Saggio sulle sezioni coniche”, in cui formulò uno dei fondamentali teoremi di geometria proiettiva, noto come Teorema di Pascal: i sei vertici di un esagramma giacciono su una conica se e solo se i punti di intersezione delle tre coppie di lati opposti giacciono su una stessa retta (vedi figura a lato).

LA PARABOLA La parabola fornisce un eccellente modo per amplificare i suoni provenienti da una particolare posizione e allo stesso tempo attenuare tutti gli altri suoni. Nella parabola, tutte le onde sonore parallele al suo asse vengono riflesse in un unico punto detto fuoco.  Ponendo un picccolo microfono proprio in questo punto si riceverà tutta l'energia che colpisce il piatto della parabola.  Se il microfono è da solo riceve solo una piccola parte dell'energia emanata e inoltre, riceve anche anche altri suoni indesiderati che non permettono di isolare il suono desiderato.

Se invece si pone un microfono nel fuoco di una parabola con  piatto di circa 50 cm di diametro la situazione è ben diversa. La superficie che riceve le onde sonore è infatti circa 5000 volte maggiore di quella che offre il microfono da solo. In tal modo, anche la quantità di energia sonora che colpisce il microfono viene incrementata di 5000 volte e verranno ricevuti solo i suoni desiderati. Sullo stesso principio si basano le parabole satellitari poste sui tetti delle nostre case: non si tratta più di onde sonore, ma magnetiche; non c'e più il microfono ma un apposito convertitore.

Gli specchi ustori ed i riflettori dei fari utilizzano lo stesso principio delle antenne paraboliche ma in modo opposto . Probabilmente il primo faro ad utilizzare queste proprietà focali fu il faro di Alessandria, considerato all'epoca una delle sette meraviglie del mondo. Si dice che fosse alto 85 metri e che potesse esser visto a circa 50 km di distanza. Fu costruito nel 280 a. C., ovvero nell'epoca in cui lo studio delle coniche da parte dei Greci era in pieno sviluppo. Soltanto nel XVII secolo con la ripresa dello studio delle coniche venne recuperata anche questa arte. Ai nostri giorni anche i fari delle automobili ed i proiettori in genere utilizzano lo stesso principio. I FARI

LA CAMERA A VOLTA ELLITTICA Una proprietà dei fuochi di un'ellisse consiste nel fatto che la perpendicolare all’ellisse in un suo punto qualsiasi divide per metà l’angolo formato dai segmenti che uniscono questo punto con i due fuochi. Di conseguenza se si parla, o addirittura si bisbiglia, in un fuoco di una camera a volta ellittica, le onde sonore si rifletteranno sulla volta e andranno a concentrarsi di nuovo nell’altro fuoco, dove possono essere udite da una persona che occupa quella posizione.