Fotonica 3D.

Slides:



Advertisements
Presentazioni simili
Applicazioni Fotonica1: Propagazione. Slow light Negative v g Strong dispersion.
Advertisements

1D Photonic Crystal Struttura a bande.
1 Quale spazio per uneducazione plurilingue nella scuola di oggi? Firenze, 30 settembre 2011 Silvia Minardi.
BIFFI ITALIA s.r.l. FIORENZUOLA D'ARDA DAL 14/01/2013 AL 1/02/2013
Simmetria Traslazioni (Lattices) Traslazione 1-D = un filare
Molecola lineare triplo legame 1 s 2 p,
Molecola lineare triplo legame 1 s 2 p,
Roberto Chierici2 Il programma dell LHC e molto ambizioso. Vogliamo rispondere a molte di queste domande. Potremmo essere ad un passo da una rivoluzione.
BRISCOLA GO ON AVANTI. Storia I giochi di carte hanno le origini più disparate e vengono collocati in differenti epoche, la Briscola risale al La.
Chistmas is the most loved holiday of the years. Adults and children look forward to Chistmas and its magical atmosphere. It is traditional to decorate.
Ettore Vittone: Dip. Fisica Sperimentale, Università di Torino; A.A Fisica dei Dispositivi Elettronici e Sensori; Laurea in Fisica; Fisica Stato.
Exports of goods and services
Frequency Domain Processing
Water is life - Water, our lives
Istruzione, Tirocinio e Lavoro
LM FOTOCHIMICA E MATERIALI MOLECOLARI
I giorni della settimana
CMS RPC R&D for phase 2 Two types of upgrades proposed for the CMS RPC muon system: 1.Aging and longevity: installed in 2007, must continue to operate.
Ontologia AA F. Orilia. Lez. 16 Discussione dell'approccio controfattualista di lewis condotta da Antonio De Grandis.
Love, Love, Love. Love, Love, Love. Love, Love, Love. There's nothing you can do that can't be done. Nothing you can sing that can't be sung. Nothing.
CMS RPC R&D for phase 2 Two types of upgrades proposed for the CMS RPC muon system: 1.Aging and longevity: installed in 2007, must continue to operate.
Benvenuti in Italian Club!. Who speaks Italian Language? More than 150 million people speak Italian language worldwide (about half are native speakers)
Metodi Quantitativi per Economia, Finanza e Management Lezioni n° 7-8.
SUMMARY Interfacing typologies RIEPILOGO Tipologie dell’interfacciamento RIEPILOGO Tipologie dell’interfacciamento.
Un problema multi impianto Un’azienda dispone di due fabbriche A e B. Ciascuna fabbrica produce due prodotti: standard e deluxe Ogni fabbrica, A e B, gestisce.
Metodi di indagine di molecole biologiche 2008 Piccioli-Turano Spettroscopia NMR di molecole Biologiche. Aspetti fondamentali della tecnica (Recupero nozioni.
Accoppiamento scalare
SUMMARY Time domain and frequency domain RIEPILOGO Dominio del tempo e della frequenza RIEPILOGO Dominio del tempo e della frequenza.
Viruses.
Oggi è il quindici aprile LO SCOPO: Impariamo ad usare i pronomi tonici. FATE ADESSO: Study for 5 minutes.
SUMMARY Quadripoles and equivalent circuits RIEPILOGO Quadripoli e circuiti equivalenti RIEPILOGO Quadripoli e circuiti equivalenti.
(Prof. Daniele Baldissin)
2 maggio 2005Master in economia e politica sanitaria - Simulazione per la sanità 1 _jES _______________________________________ jES, java Enterprise Simulator.
John Winston Ono Lennon was an English musician. From 1962 to 1970 he was a composer and singer (soloist) of the musical group the Beatles. Along with.
L A R OUTINE D EL M ATTINO Ellie B.. Io mi sono svegliata alle cinque del mattino.
PAST SIMPLE O PRESENT PERFECT?
SUMMARY Dinamic analysis RIEPILOGO Analisi dinamica RIEPILOGO Analisi dinamica.
Stefano Rufini Tel
SUMMARY Transmission and distribution of the electric energy RIEPILOGO Trasmissione e distribuzione dell’energia elettrica RIEPILOGO Trasmissione e distribuzione.
Relative pronouns Forms and uses. Relative pronouns Uses and functions of the relative CHI Translates he who, she who, those who, everybody who Does not.
Filtri del secondo ordine e diagrammi di Bode
Condizioni al contorno Riflessione e rifrazione
SUMMARY Interconnection of quadripoles RIEPILOGO Interconnessione di quadripoli RIEPILOGO Interconnessione di quadripoli.
Omnidirectional mirror 2000 BC. Omnidirectional mirror Riflessione metallica Metalli riflettono a tutti gli angoli ma esiste un angolo di pseudo Brewster.
Fotonica Equazione autovalori. Frequency and phase are maintained Single scattering Single dielectric object.
Quasi cristalli Dan Shechtman The Nobel Prize in Chemistry 2011.
NOUNS ARE PERSONS, PLACES OR THINGS. SOOO... THERE IS MORE TO THAT THAN YOU THINK!!!
Modi guidati. Cono di luce Within the limit angle Dielectric slab Beyond the limit angle.
Plasmonics. Drude-Lorentz Equazioni classiche dell’interazione radiazione-materia Dielettrici.
Fotonica Proprietà generali 2. Posto Si ha Proprietà di scala 1 a a/s V sistema fotonico un cambio di scala spaziale rinormalizza TUTTI gli stati allo.
Applicazioni Fotonica 2: Emissione. Slow light Negative v g Strong dispersion.
LE PREPOSIZIONI. Le Preposizioni semplici (Simple prepositions) A preposition describes a relationship between other words in a sentence. In itself, a.
CRISTALLI FOTONICI I cristalli fotonici nascono dall’osservazione della natura: le ali di farfalla hanno una struttura periodica che seleziona e riflette.
Il partitivo Italian 3 – Cap. 9. Il partitivo To express indefinite quantities in Italian – the equivalent of some, any, a few, in English – you can use.
Difetti. Microcavità e guide d’onda. BM Difetti in PhC 1D.
It’s easy to know when we have to put emphasis on the last syllable of words with two or more syllables! These words have an accent on the last letter!
Buon giorno, ragazzi oggi è il quattro aprile duemilasedici.
Un processo separativo di tipo cromatografico ha quindi come risultato un profilo di concentrazione risolto nello spazio o nel tempo di forma gaussiana.
Semiconduttori ElementE g, eV C5.2 Si1.10 Ge0.72 Sn gray0.01.
CROMATOGRAFIA LIQUIDA (L.C.) Gel filtrazione (Size-exclusion chromatography) Scambio ionico (Ion exchange chromatography) Affinità (Affinity chromatography)
Lina, Paolo, Tonino, Riccardo.   An assessment of the need for a photo-production facility and its design  The neutron part should not exceed 20 pages.
TGC upgrade for SLHC (ATL-P-MN-0028 ) Fra le parti più colpite dall’aumento di rate previsto a SLHC ci sono le Small Wheels Le TGC con catodo a bassa resistività.
Low Energy Particle Detector: Laser Induced DORELAS Rivelatori a Bassa Soglia di Energia vs Fisica Dai KeV all’eV sguardo d’insieme e prospettive Pompaggio.
STMan Advanced Graphics Controller. What is STMan  STMan is an advanced graphic controller for Etere automation  STMan is able to control multiple graphics.
Angolo tra due rette e bisettrice
The scattering vector from a single atom is known as the atomic scattering factor. It is denoted f, and has length |f| and phase . The resultant.
Fotonica Equazione autovalori.
Fotonica Proprietà generali 2.
C’è un sacco di spazio là in fondo
Preliminary results of DESY drift chambers efficiency test
Transcript della presentazione:

Fotonica 3D

Splitting della degenerazione: Aggiungiamo una piccola anisotropia Bang gap si apre al bordo della FBZ Richiamo esempio 1D Splitting della degenerazione: state concentrated in higher index (e2) has lower frequency Aggiungiamo una piccola anisotropia e2 = e1 + De a e(x) = e(x+a) e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 w Air band band gap Dielectric band π/a x = 0

w G π/a1 π/a2 Bang gap si apre al bordo della FBZ a1 a2 Se sistema anisotropo non c’è sovrapposizione di gap. w Air band band gap Dielectric band G π/a1 π/a2

w G X M Bang gap si apre al bordo della FBZ a a Se sistema più isotropo c’è sovrapposizione di gap. w Air band band gap Dielectric band G X M

Fotonica 2D. Cristallo esagonale meglio di quadrato FBZ FBZ

Reticoli “simmetrici”: cubo

FBZ FCC ha FBZ più simmetrico

FCC non ha PhC band gap

FCC non ha PhC band gap Sfere troppo lontane

FCC vs Diamond 4 sfere in V=a3 8 sfere in V=a3 MPB tutorial, http://ab-initio.mit.edu/mpb K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152 (1990). 8 sfere in V=a3 Diamond: fcc (face-centered-cubic) with two “atoms” per unit cell. Same FBZ of fcc Closer packing

Diamante ha PhC band gap overlapping Si spheres

Interconnessioni nella direzione di E Ricetta per un band gap completo: caso 2D TM gap TE gap Interconnessioni nella direzione di E Alto contrasto di indice

Diamante ha PhC band gap

Diamante ha PhC band gap r/a=0.22 Interconnessioni

Diamante ha PhC band gap

Regole generali per un PhC 3D PhC band gap è abbastanza raro Necessità di FBZ isotropa e condizione spot-vein Se PhC esiste, c’è un valore di soglia del contrasto di indice sopra il quale si apre il gap Il gap cresce con il contrasto Esistono valori ottimali per massimizzare gap/midgap (raggio sfere, lunghezza vein).

Elementi unitari per un PhC 3D Molti gradi di libertà Spot Vein

First PCBG

Yablonovite

Yablonovite

Layer-by-Layer Lithography • Fabrication of 2d patterns in Si or GaAs is very advanced (think: Pentium IV, 50 million transistors) …inter-layer alignment techniques are only slightly more exotic So, make 3d structure one layer at a time Need a 3d crystal with constant cross-section layers

A More Realistic Schematic [ M. Qi, H. Smith, MIT ]

Vertical cut Layered structure vein spot hole layer

New diamond-like fcc crystal

The Woodpile Crystal an earlier design: (diamond-like, “bonds”) (& currently more popular) [ K. Ho et al., Solid State Comm. 89, 413 (1994) ] [ H. S. Sözüer et al., J. Mod. Opt. 41, 231 (1994) ] (diamond-like, “bonds”) Up to ~ 17% gap for Si/air S. Y. LIN et al., Nature 394, 251 - 253 (1998) The vertical topology of the 3D lattice structure is built by the repetitive deposition and etching of multiple dielectric films. To accomplish this goal, a comprehensive five-level stacking process was developed. Within each layer, SiO2 was first deposited, patterned, and etched to the desired depth. The resulting trenches were then filled with polycrystalline silicon. Following this, the surface of the wafers were made flat using chemical mechanical polishing11, and the process was then repeated. After the five-level process was completed, the wafer was immersed in a HF/water solution for the final SiO2 removal. Figure 2a shows a scanning electron micrograph (SEM) top view of a completed four-layer structure. It has an impressive periodicity over an area of (1 cm times 1 cm). The underlying layer structure is also evident. In Fig. 2b, an SEM cross-sectional view of the same 3D photonic crystal is shown. The pitch between adjacent rods is d = 4.2 mum, the rod width is w = 1.2 mum and the layer thickness is 1.6 mum. The smoothness of the planarized surface is controlled to within 1% of the layer thickness across the entire 6-inch wafer. As the preparation of this 3D lattice involves the use of well developed and supported Si integrated-circuit fabrication process, it is suitable for large-scale integration and production. [ Figures from S. Y. Lin et al., Nature 394, 251 (1998) ]

The Woodpile Crystal

The Woodpile fabrications with polymers

The Woodpile fabrications with laser writer

Self assembly

Self assembly

Inverse Opals fcc solid spheres do not have a gap… [ figs courtesy D. Norris, UMN ] fcc solid spheres do not have a gap… …but fcc spherical holes in Si do have a gap Infiltration sub-micron colloidal spheres Template (synthetic opal) 3D Remove Template “Inverted Opal” complete band gap ~ 10% gap between 8th & 9th bands small gap, upper bands: sensitive to disorder

Inverse-Opal Photonic Crystal [ fig courtesy D. Norris, UMN ] [ Y. A. Vlasov et al., Nature 414, 289 (2001). ]

Inverse-Opal Band Gap good agreement between theory (black) On-chip natural assembly of silicon photonic bandgap crystals AUTHOR: Vlasov,-Y.-A.; Xiang-Zheng-Bo; Sturm,-J.-C.; Norris,-D.-J. SOURCE: Nature-. 15 Nov. 2001; 414(6861): 289-93 [ Y. A. Vlasov et al., Nature 414, 289 (2001). ] Comparison of optical results with calculations. a, Experimental (red) and calculated (black) transmission spectra for incidence normal to the (111) plane of a 7-layer planar opal made from 855-nm silica spheres with a refractive index of 1.45. The frequency is plotted in units of c/a, where c is the speed of light and a is the lattice constant. b, The photonic band diagram calculated along the [111] direction for the same parameters used in a. c, The photonic band diagram calculated for the Si inverted opal measured in d and e. d, Experimental reflection spectra for amorphous Si inverted opals measured normal to the (111) plane. Data from two samples, with a equal to 1,070 nm (red) and 841 nm (blue), are combined. The wavelength scale corresponds to the 1,070-nm sample. The best theoretical fit (black) was obtained for a Si coating sphere radius of 0.428 and an air sphere radius of 0.354. e, Experimental and theoretical reflection spectra as in d for incidence normal to the (100) plane. The blue-hatched region denotes the expected frequency range of the bandgap. For calculations, we used 12.25 as the dielectric constant of Si. However the standard method for growing the initial opal (sedimentation of spheres from suspension) yields centimetre-scale pieces of polycrystalline material with numerous defects in the crystal lattice (stacking faults, dislocations and point defects). As the bandgap in f.c.c. photonic crystals is relatively narrow, these defects can easily close the gap by filling it with localized photonic states16. We used an alternative method to form synthetic opals. Recent research has improved control over colloidal crystallization in various geometries20-22. In particular, strong capillary forces at a meniscus between a substrate and a colloidal sol can induce crystallization of spheres into a 3D array of controllable thickness22. If this meniscus is slowly swept across a vertically placed substrate by solvent evaporation, thin planar opals can be deposited. As solvent evaporation must compete with sedimentation, this method is believed to be limited to spheres with diameters <0.4 µm. But spheres with larger diameters (0.8 µm) are required to make photonic crystals with a bandgap at technologically important wavelengths such as 1.3 or 1.5 µm (ref. 19), so we added a convective flow to the sol to minimize sedimentation and provide a continuous flow of particles toward the meniscus region. We found straightforward conditions that yielded planar opals using large (up to 1 µm) silica colloids. For example, a Si wafer was placed vertically in a vial containing an ethanolic suspension of silica spheres (855 1.3% in size, 1% by volume). Flow was achieved by placing a temperature gradient across the vial (from 80 °C at the bottom to 65 °C near the top). Scanning electron microscopy (SEM) images of the resulting templates (Fig. 1a) indicate that the defect densities (1% stacking faults, 10-3 point defects per unit cell) are much lower than for sedimented opals (20% stacking faults, 10-2 point defects per unit cell16). In addition, this approach yields large-sphere opals up to 20 layers thick that coat centimetre-scale areas of the Si wafer (Fig. 1b). SEM and optical diffraction measurements (Fig. 1c) show that these opals have single crystalline domains (1 mm–1 cm) that are 10–100 times larger than in the best sedimented opals. We speculate that the improved quality of these samples is due to a meniscus-induced shear that aligns the close-packed layers into a f.c.c. crystal during deposition, as shown in other geometries23. Once such a template was prepared, its interstitial spaces were filled with Si to satisfy the refractive index requirement for the photonic bandgap. In previous work, a purpose-built apparatus was required, in which disilane was first condensed into the pores of the opal at cryogenic temperatures and subsequently decomposed by heating at pressures of 200 torr (ref. 15). Although homogeneous infiltration was demonstrated for sedimented opals, this process did not allow sufficient control over the deposition to fill our thin planar opals. Instead, we filled planar opals using a commercially available low-pressure chemical vapour deposition (LPCVD) furnace that provides complete control of the growth parameters24. As LPCVD is surface-reaction-limited, this technique is in principle well suited to conformal filling of the interstitials of the opal. Furthermore, an advantage of LPCVD is that it is the standard Si deposition technique for the microelectronics industry (used, for example, in complementary metal-oxide-semiconductor, CMOS, technology). Unfortunately, under typical CMOS fabrication conditions near 600 °C, filling the opal template can be problematic. First, infiltration of the structure can be limited by premature obstruction of the outermost channels (100 nm) of the opal, which provide gas transport to the innermost layers. Second, deposition results in polycrystalline silicon (poly-Si) with grains (100 nm) that can introduce undesirable roughness at surfaces inside the final photonic crystal. By decreasing the temperature to 550 °C, we obtained homogeneous infiltration with LPCVD even for templates as thick as 40 layers. The lower temperature reduced the sticking coefficient of the precursor, allowing deposition to penetrate all the way to the Si wafer without a visible interface (Fig. 2a). Temperatures below 580 °C also avoided internal surface roughness by uniformly depositing amorphous silicon (a-Si), which was then transformed into a poly-Si structure with smooth interfaces by annealing at 600 °C for 8 hours. After deposition, the silica template was removed by wet etching. Thus thin planar inverted opals of controllable thickness were obtained (Fig. 2a–d) that were incorporated directly into the wafer and inherited the advantageous mechanical properties of poly-Si. good agreement between theory (black) & experiment (red/blue) [ Y. A. Vlasov et al., Nature 414, 289 (2001). ]

Other diamond-like fcc crystal There is a gap

PAD PCD

Amorphous silicon has an electronic gap c-Si a-Si

Fotonica 2.5D  d

Fotonica su slab d

Slab omogenea Entro il cono di luce Oltre il cono di luce Modi guidati

onda evanescente onda evanescente Rappresentazione modi guidati: Confinamento 1D della luce onda evanescente Confinamento 1D della luce dovuto ad “index guiding” Slab onda evanescente

Diagramma a bande 2D

Diagramma a bande 2D + cono di luce

Diagramma a bande slab Confinamento 2D nel PBG e 1D da index guiding