La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Pianeta Terra Come salvarlo? BIOLOGIA VEGETALE SOSTENIBILITA’ RICERCA P.Bonfante, Dipartimento di Biologia vegetale, Università di Torino 16 febbraio 2009.

Presentazioni simili


Presentazione sul tema: "Pianeta Terra Come salvarlo? BIOLOGIA VEGETALE SOSTENIBILITA’ RICERCA P.Bonfante, Dipartimento di Biologia vegetale, Università di Torino 16 febbraio 2009."— Transcript della presentazione:

1 Pianeta Terra Come salvarlo? BIOLOGIA VEGETALE SOSTENIBILITA’ RICERCA P.Bonfante, Dipartimento di Biologia vegetale, Università di Torino 16 febbraio 2009 Il Contributo della Biologia vegetale allo sviluppo di una agricoltura sostenibile

2 Ambiente e Sviluppo sostenibile Espansione dei deserti Produttività delle terre coltivabili Fertilizzanti Inquinamento Erosione dei suoli Biodiversità Conservazione delle foreste Cambiamento climatico Effetto serra Fonti energetiche Biofuel

3 Dipendiamo interamente dalle piante per quanto riguarda la catena alimentare e l’ossigeno che respiriamo

4 Conversione dell’energia luminosa in energia chimica Le piante generano materia organica attraverso la fotosintesi Ogni millimetro quadro di foglia contiene circa 500,000 motori fotosintetici chiamati cloroplasti luce Luce assorbita Luce riflessa Luce trasmessa

5 Coltiviamo le piante per vestirci, per costruire le case, ma soprattutto per sfamarci Jared Diamond Armi, Acciaio e Malattie

6 Plants for FOOD Come nutrire una popolazione di 6.5 miliardi? (9 miliardi tra 20 anni) Le Piante producono 160.000 miliardi di Kg di carboidrati ogni anno E in un contesto di sostenibilità?

7 La rivoluzione verde Agricoltura ad alta resa con elevato uso di sostanze chimiche.. Premio Nobel per la pace: Norman Borlaugh, 1970 Ottenimento di frumento ad alta resa in Messico 1960-1980 Giappone, Filippine, USA Riso: varietà Japonica e Indica Oryza sativa L. ssp. japonica Oryza sativa L. ssp. Indica a Applicazione di fertilizzanti inorganici Erbicidi e fitofarmaci Tecnologia di irrigazione, Nuove macchine….

8 Sala, LE SCIENZE 2000 PaeseColtura19631983 India Cina Frumento Riso Frumento Riso 0,9 1,0 2,0 1,7 2,2 2,5 4,7 Risultato della Rivoluzione Verde: rese di frumento Fonte: dati della FAO.

9 I PROBLEMI Ambientali Sociali

10 Ci deve essere un flusso di informazioni tra scienza e politica Come colmare il gap ? Un esempio dalla Gran Bretagna

11 WELCOME TO 100PLANTSCIENCE QUESTIONS What are the top 100 contributions that this generation of plant scientists might make in Economic, Global, Scientific, & Social Arenas? Help us find the 100 most important questions facing plant science. Anyone is welcome to contribute, including members of the general public agriculture, horticulture and forestry industries; charities; policy makers; food, fibre, fuel and pharmaceutical industries; funding bodies; and researchers. You can choose to submit your questions anonymously, or otherwise be credited. Submit as many questions as you like. Questions can be submitted until the end of March 2009. The panel will select a final list of 100 questions at a workshop in April 2009. The final list will be published via peer review and hopefully inform relevant scientific, political and social agendas.We thank William Sutherland and colleagues for inspiration (http://www3.interscience.wiley.com/journal/118732590/abstract)http://www3.interscience.wiley.com/journal/118732590/abstract

12 Categories Ecosystem services Farming Forestry Fisheries and Aquaculture Recreation and field sports Urban development Alens and invasive species Pollution Climate change Energy generation Conservation strategies Habitat management Connectivity and landscape structure Making space for water

13 Facoltà di Scienze M.F.N. Corso di Laurea in Scienze Naturali Biotecnologie Ambientali A. Ac. 2008/2009 Lavoro di: Botti Valentina Candellero Luisa Marchioni Annalisa Rolle Simone Tamburino Lucia Zecchino Andrea

14 Costo Economico e Ambientale della fertilizzazione chimica azotata Energia Fossile N 2 fertilizzanti 80 x 10 6 t / yr CO 2 N0 3 - Più 50% del costo energetico Inquinamento delle falde

15 Scopo della presentazione Due esempi che offrono strategie alternative 1.Rizosfera 2.Simbiosi fissatrici di azoto 3.Simbiosi micorriziche

16 insects nematodes fungi bacteria Mycorrhizal fungi N fixing bacteria Endobacteria

17 Le micorrize arbuscolari (AM) e i noduli fissatori di Azoto sono considerate le forme più importanti di simbiosi per l’ecosistema 'that help feed the world' (Marx, Science 2004) AM fungi Plant P, N and other nutrients C azoto molecolare (N 2 ) ridotto in azoto ammonico (NH 3) )

18 Ordovician Devonian Cretaceous Tertiary Parniske

19 Il ciclo dell’azoto

20 Forme di azoto assimilabili dai vegetali superiori Stato di ossidazione dell’azotoComposto in soluzione acquosa +5HNO3Rapido dilavamento +3HNO2 +2NO +1N2O 0N2 -2 -3NH3Legato alle particelle di argilla N2 78% dei gas atmosferici Il triplo legame della molecola è molto stabile Fissazione biologica dell’azoto atmosferico catalizzata dal complesso enzimatico della NITROGENASI Inibizione irreversibile da parte dell’ossigeno atmosferico

21 La nutrizione azotata

22 L’assimilazione dei nitrati

23 Azoto fissatori simbionti

24

25 I noduli al Microscopio Ottico I batteroidi

26 I noduli radicali I noduli radicali delle leguminose (Rhizobium, Bradyrhizobium) I noduli radicali dell’ontano (Frankia) Tappe nella formazione dei noduli delle leguminose 1.Chemiotassi del batterio verso la radice (FLAVONOIDI tra gli essudati radicali) 2.Attivazione genica del batterio (i geni implicati nella simbiosi sono tutti raggruppati su un unico plasmide) 3.Produzione del FATTORE di NODULAZIONE Deformazione del pelo radicale Induzione di un meristema nel parenchima corticale della radice Sviluppo del nodulo radicale 4.Attacco del batterio sui peli radicali emergenti Inizio del processo di infezione (tubetto di infezione) Rilascio dei batteri nel citoplasma della cellula vegetale (membrana peribatteroide) Trasformazione dei batteri in Batteroidi Produzione di leghemoglobina per abbassare il tasso di Ossigeno nel nodulo Fase extraradicale Fase intraradicale

27 Nod factor

28 Inoculati Non inoculati Le leguminose sono coltivate su 250 milioni di ettari il 25 % delle colture di soia sono inoculate con rizobi

29 Agricultural use of Nod factors Based on the stimulation of symbiotic infection and nodulation by nanomolar NF concentrations Seed co-treatment with Rhizobia and Nod factors Increased yield of soybean, peanut, alfalfa and pea Optimize launched in 2004-2006 for these crops More than 1 million hectares in 2006 S.Uhlenbroich, F.Maillet, J.Dénarié (LIPM, Toulouse), G.Laguerre (Soil Microbiology INRA Dijon), S.Smith (EMD Crop BioScience Inc., USA)

30 Il ciclo del fosforo

31 The benefits of mycorrhizal fungi, more than 6000 fungal species... Mineral nutrition Protection Growth Effect Soil Texture Biodiversity Fruit bodies production

32 AM fungi C Plant P, N And other nutrients

33 Piante per il Pianeta Piante per l’Ambiente Piante per l’Uomo Piante per il Futuro Ricerca! Come si studiano adesso le Micorrize?

34 Genoscope European Consortium

35 Arabidopsis thaliana Oryza sativa Populus tremula Vitis vinifera 2007 20002006

36 Genome projects for mycorrhizal fungi Laccaria bicolor Martin et al., March 2008, Nature … still going on Glomus intraradices 15 Mb

37 400 Million years ago Asteroxylon Today

38 Liverwort Fern Gynkgo biloba Medicago Carrot 1.AMs managed to persist across one of the major steps of plant development programs: the transition from N gametophytes to dominant 2N sporophytes 2.Some aspects of the colonization process are strikingly uniform The colonization process

39 Existence of common Molecular and Genetic Determinants Plant Symbiotic genes (Sym genes) M. Parniske, 2004; Oldroyd and Downie, 2006

40 Poliphosphate- kinase? (Smith & Read, 1997) GvPT (Harrison & Van Buuren,1995) GiPT (Maldonado- Mendoza et al, 2001) GmPT (Benedetto et al., 2005) StPT3 (Rausch et al, 2001) MtPT4 (Harrison et al, 2002) OsPT11 (Paszkowski et al, 2002) MtPT1 (Chiou et al, 2001) StPT2 (Gordon-Weeks et al, 2003) MV ’ 03 Plants possess PTs which are mycorrhiza specific

41 The colonization process Arbuscular interface: Nutritional exchange site

42 Confirmation of differentially expressed genes by qRT-PCR fold reg. Ammonium Transporter31900MLO protein20 Myb Transcription Factor20300Scarecrow 3 like protein18 Protease inhibitor/ Seed storage/ Lipid transfer protein 4100Gibberellin 2 Oxidase16 Cysteine proteinase3100ABC Transporter like Protein15 Phosphate Transporter1400Endo-1,4-β-Glucanase CEL112 Peptide Transporter1300Subtilisin-Inhibitor11 Subtilisin like Protease460Cellulose Synthase10 Amino Acid Transporter360TOM (target of myb) Protein9 ABC Transporter like Protein290Sulfate Transporter8 Unknown Protein180Glycosylhydrolase Family 16 Scarecrow 3 like Protein100Scarecrow 1 like protein4 Potassium Transporter44Proline-rich Cell Wall Protein0,35

43 Mic Non Mic Mic Non Mic

44 Conclusioni Cercare soluzioni “biologiche” e sostenibili 1. L’alleanza radici microorganismi è stata premiata durante l’evoluzione 2. In natura le radici vivono in simbiosi con batteri fissatori di N e con funghi micorrizici 3. I meccanismi molecolari che hanno permesso il successo di questi biofertilizzatori non sono ancora del tutto chiariti Capire come meglio utilizzare i biofertilizzatori naturali sarà una delle sfide della biologia verde…….


Scaricare ppt "Pianeta Terra Come salvarlo? BIOLOGIA VEGETALE SOSTENIBILITA’ RICERCA P.Bonfante, Dipartimento di Biologia vegetale, Università di Torino 16 febbraio 2009."

Presentazioni simili


Annunci Google