La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Il Paradosso del Hotel Infinito è un celebre paradosso inventato dal matematico tedesco David Hilbert per mostrare alcune caratteristiche del concetto.

Presentazioni simili


Presentazione sul tema: "Il Paradosso del Hotel Infinito è un celebre paradosso inventato dal matematico tedesco David Hilbert per mostrare alcune caratteristiche del concetto."— Transcript della presentazione:

1 Il Paradosso del Hotel Infinito è un celebre paradosso inventato dal matematico tedesco David Hilbert per mostrare alcune caratteristiche del concetto di infinito, e le differenze fra operazioni con insiemi finiti ed infiniti. David Hilbert (1862 – 1943) La storia che raccontiamo narra del viaggio di Ion il Tranquillo, protagonista dell’avventura nello spazio…

2

3

4 Ion non ebbe fortuna perché l’hotel ospitava i delegati del congresso di zoologia cosmica. Siccome gli zoologi cosmici venivano da tutte le galassie, e di galassie ne esiste un numero infinito, tutte le stanze erano occupate. Ion il Tranquillo cercava una camera…. Pensò di trovarla all’Hotel Infinito, noto per avere infinite stanze.

5 Il direttore decide di spostare lo zoologo della stanza 1 nella 2, quello della 2 nella 3 e così via… così può mettere Ion nella stanza 1! In generale, viene spostato lo zoologo della stanza «n» nella stanza «n+1» …Soluzione del problema…

6 Il problema si complicò perché arrivò un rappresentante dei filatelici per ogni galassia per partecipare al congresso interstellare dei filatelici

7 Il direttore, come soluzione al problema, decise di spostare l’ospite della 1 nella 2, quello della 2 nella 4, quello della 3 nella 6 e così via… Così, gli zoologi occuparono l’insieme delle stanze dei numeri pari e i filatelici occuparono l’insieme delle stanze dei numeri dispari, visto che il filatelico n-esimo nella coda ottenne il numero di stanza «2n-1» In generale mettere l’ospite della stanza «n» nella stanza «2n»

8 Povero lui, che dovrà arrivare alla stanza !

9 Il congresso degli zoologi terminò, e gli ospiti andarono via, lasciando vuote infinite stanze. Per lo stupore di Ion, il direttore si preoccupò perché non sarebbe più riuscito a raggiungere il preventivo di bilancio. Ion non capiva di che preventivo si parlasse, visto che i filatelici erano infiniti e quindi al direttore venivano pagate infinite stanze! Alla fine il direttore decise di lasciar stare l’ospite della stanza numero 1 nella sua stanza e di spostare l’ospite della stanza numero 3 nella stanza numero 2, l’ospite della numero 5 nella 3 e così via… …Così l’hotel risultò di nuovo pieno! …Così l’hotel risultò di nuovo pieno!

10 I costruttori dell’Hotel Cosmos avevano smantellato tantissime galassie per costruire infiniti hotel con infinite stanze. Furono costretti, però, a rimettere tutto in ordine e a chiudere tutti gli hotel, eccetto l’Hotel Cosmos

11 Quindi venne chiesto al direttore di mettere le infinite persone di infiniti hotel nel suo hotel, già pieno. COME FARE ?

12 Un apprendista cuoco avanzò una proposta: Lasciare stare l’ospite della stanza numero 1 nella sua stanza, spostare l’ospite della stanza numero 2 nella stanza numero 1001, l’ospite della stanza numero 3 nella stanza numero 2001 e così via. Fatto ciò mettere gli ospiti del secondo hotel nelle stanze 2, 1002, 2002 e così via. Gli ospiti del terzo hotel nelle stanze 3, 1003, 2003 e così via. Questa idea non risultò essere utile perché non ci sarebbero state stanze per gli ospiti degli hotel 1001 e seguenti.

13 Quindi un contabile propose di usare una delle proprietà delle progressioni geometriche: progressioni geometricheprogressioni geometriche Mettere gli ospiti del primo hotel nelle stanze 2, 4, 8, 16, 32 e così via. Gli ospiti del secondo hotel andavano messi nelle stanze 3, 9, 27, 81 e così via. Ma arrivati al numero 4, questa proposta risultò irrealizzabile perché nella stanza numero 4 c’era già un ospite…

14 Ion propose di usare solo le progressioni dei numeri primi poiché se si prendono due numeri primi, nessuna delle potenze intere positive di uno può equivalere a quelle dell’altro.

15 In questo modo nessuna stanza avrebbe avuto due occupanti!

16

17 Tutti gli insiemi hanno sottoinsiemi, formati da elementi dell’insieme stesso. Consideriamo il caso di due insiemi con un numero finito di elementi: A=  1,2,3,4,5,6,7,8,9,10  B =  6,7,8,9,10  B è un sottoinsieme di A B è una parte PROPRIA di A, cioè in B ci sono SOLO ALCUNI elementi di A Quindi il numero di elementi di B è minore del numero di elementi di A, cioè la cardinalità di B è minore della cardinalità di A (|A|<|B|) cardinalità

18 Questo concetto diventa più complesso quando operiamo con gli insiemi infiniti. Prendiamo il caso degli insiemi numerici che abbiamo studiato. insiemi numerici che abbiamo studiatoinsiemi numerici che abbiamo studiato Consideriamo l’insieme N dei numeri naturali e l’insieme P dei numeri pari. N P N P … … L’insieme dei numeri pari P è un sottoinsieme proprio dell’insieme dei numeri naturali N ? N =  1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12;..  È vero che P è sottoinsieme proprio di N perché in P ci sono SOLO alcuni elementi di N.

19 N N P … … Quale insieme ha più elementi? N o P ? La corrispondenza è biunivoca: ad ogni elemento di N possiamo associare uno e un solo elemento di P ad ogni elemento di N possiamo associare uno e un solo elemento di P

20 Il primo a comprendere ciò è stato il matematico tedesco Georg Cantor ( ), che ha introdotto il concetto di EQUIPOTENZA che ha introdotto il concetto di EQUIPOTENZA Se due insiemi sono in corrispondenza biunivoca, questi si dicono equipotenti. In tal caso si dice che gli insiemi hanno la stessa cardinalità o la stessa potenza. Quindi possiamo dedurre che in un insieme infinito "una parte può essere equivalente al tutto". Questa teoria è in contrasto con l’assioma di Antonio De Zolt (1881) sul confronto delle aree, che, riprendendo quanto già affermato da Euclide negli Elementi (300 a.C. circa) dice: «Il tutto non equivale a una sua parte". «Il tutto non equivale a una sua parte". Nel caso dell’esempio dei numeri pari, abbiamo visto che P è una parte di N però i due insiemi sono equivalenti: N e P sono EQUIPOTENTI !

21 Prendendo in considerazione il postulato di De Zolt, cioè «Il tutto non può essere "uguale" a una sua parte» e operando con insiemi infiniti, si generano dei paradossi, che iniziarono a tormentare già Galileo Galilei nel XVI secolo. George Cantor capì l’origine dei paradossi dell’infinito… Egli si chiese… … UGUALE RISPETTO A COSA? 1° SIGNIFICATO (ARISTOTELE) La parte non è uguale-identica al tutto che la contiene. LA PARTE È CONTENUTA PROPRIAMENTE NEL TUTTO 2° SIGNIFICATO (CANTOR) La parte può essere uguale PER NUMERO al tutto. LA PARTE PUÒ ESSERE EQUIPOTENTE AL TUTTO

22 Alla luce di queste considerazioni, il matematico tedesco Richard Dedekind nel 1874 introdusse la seguente definizione: un insieme S si dice infinito, se è equipotente a una sua parte; nel caso opposto si chiama finito. L’infinito che abbiamo introdotto con il racconto dell’Hotel Infinito è la cardinalità di N. Cantor denominò la cardinalità di N con il simbolo  0 (la lettera ebraica ALEF seguita dallo zero)

23 Dal racconto dell’Hotel Infinito possiamo dedurre che l’infinito si comporta in modo particolare con l’addizione….. ∞+1=∞ ∞+n=∞ ∞+∞=∞ ∞+∞+∞…=∞

24 A Cantor sorse un dubbio: CI SONO VARI “GRADI” DI INFINITO?

25 Ad esempio l’insieme N (interi positivi) è una parte propria dell’insieme Z (interi positivi e negativi), allora a Z dovrebbe corrispondere un infinito “più grande” di N ? Mise in corrispondenza biunivoca e, dimostrando che la cardinalità di uno è uguale alla cardinalità dell’altro. Se ha cardinalità  0, allora anche avrà cardinalità  0 cioè hanno la stessa numerosità.  0  0 si dice POTENZA DEL NUMERABILE Ragionando sulla soluzione, Cantor ebbe un’intuizione geniale:

26 Egli è riuscito a dimostrare che c’è una corrispondenza biunivoca anche tra e e di conseguenza la cardinalità di uno è uguale alla cardinalità dell’altro. Egli è riuscito a dimostrare che c’è una corrispondenza biunivoca anche tra e Q e di conseguenza la cardinalità di uno è uguale alla cardinalità dell’altro. Siccome e si possono mettere in corrispondenza biunivoca con, questi si dicono numerabili. Siccome Q e Z si possono mettere in corrispondenza biunivoca con, questi si dicono numerabili.numerabili Ma Cantor non si è fermato a Z, si è interrogato anche sulla numerosità dell’insieme dei numeri razionali Q, che è un insieme “più fitto” di Z dovendo contenere anche numeri con la virgola….

27 E cosa succede se consideriamo l’insieme dei numeri reali R? E’ anch’esso numerabile? Cantor, ha dimostrato che R non è numerabile e che quindi la cardinalità di R non è  0. Egli indicò con la cardinalità di R. Egli indicò con "c" la cardinalità di R. c c si dice POTENZA DEL CONTINUO

28 Cantor dimostrò anche che la potenza del numerabile è la minima cardinalità degli insiemi infiniti; la potenza del numerabile è la minima cardinalità degli insiemi infiniti; esistono insiemi infiniti aventi una cardinalità superiore al numerabile e alla potenza del continuo esistono insiemi infiniti aventi una cardinalità superiore al numerabile e alla potenza del continuo numeri trasfiniti  0,  1,  2,…. (numeri trasfiniti  0,  1,  2,…). Tuttavia ipotizzò che non esistono insiemi infiniti con cardinalità intermedia tra  0 e c, cioè il grado di infinito successivo al numerabile è il continuo. Questa ipotesi prende il nome di IPOTESI DEL CONTINUO  0, c, …

29 Nel 1940 il matematico americano di origine austriaca KURT GOEDEL dimostrò che non si può dimostrare né che l’ipotesi del continuo sia vera né che l’ipotesi del continuo sia falsa. In realtà nel 1963 il matematico americano PAUL COHEN dimostrò che esistono teorie matematiche in cui si accetta che l’ipotesi sia vera e altre teorie in cui si accetta che l’ipotesi sia falsa.

30 L’infinito non è che una parola. Cit. Giovanni Soriano

31 Questo progetto è stato realizzato da: Vincenzo Russo Mattia Barone Matteo Cozzolino Giuseppe Faiella Alunni della classe 3 sezione B dell’indirizzo Costruzione Ambiente e Territorio dell’Istituto I.T.C.G.L.S. LEONARDO DA VINCI Anno scolastico

32 BIBLIOGRAFIA / SITOGRAFIA  Annarita Ruberto, Benvenuti all’Hotel Infinito  New Scientist TV, Math in a Minute: Welcome to Hotel Infinity paradox hotel-infinity-paradox.html  Stanislaw Lem, L'hotel straordinario, o il milleunesimo viaggio di lon il Tranquillo  Cristina Bonelli, Elena Gabbiani, Dall’infinito agli infiniti   Approfondimenti in classe con la docente di matematica prof. A.L. D’Ambrosio.

33 In teoria degli insiemi per cardinalità (o numerosità o potenza) di un insieme finito si intende il numero dei suoi elementi. Essa viene indicata con i simboli |A|, #(A) o card(A). Vedremo che il concetto di cardinalità si estende anche agli insiemi infiniti. Indietro

34 Si dice numerabile, un insieme che può essere messo in corrispondenza biunivoca con l’insieme N. Indietro

35 Numeri INTERI : Z = {...,−3,−2,−1,0,+1,+2,+3,…}. Numeri RAZIONALI: Q ={n/m : n ∈ Z, m ∈ N } (numeri esprimibili come frazione: interi, decimali limitati, decimali illimitati periodici). Numeri NATURALI: N ={1,2,3,…,}. Numeri IRRAZIONALI: numeri non esprimibili come frazione (decimali illimitati non periodici). Numeri REALI: comprende i numeri razionali e gli irrazionali. indietro

36 Progressioni geometriche Cosa sono… Indietro


Scaricare ppt "Il Paradosso del Hotel Infinito è un celebre paradosso inventato dal matematico tedesco David Hilbert per mostrare alcune caratteristiche del concetto."

Presentazioni simili


Annunci Google