La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

1 IL MODELLO DI REGRESSIONE MULTIPLA Per le N osservazioni possiamo scrivere: VETTORE COLONNA (N*1)

Presentazioni simili


Presentazione sul tema: "1 IL MODELLO DI REGRESSIONE MULTIPLA Per le N osservazioni possiamo scrivere: VETTORE COLONNA (N*1)"— Transcript della presentazione:

1 1 IL MODELLO DI REGRESSIONE MULTIPLA Per le N osservazioni possiamo scrivere: VETTORE COLONNA (N*1)

2 2 MATRICE (N*K) VETTORE COLONNA (K*1) (N*1) IL MODELLO IN FORMA MATRICIALE DIVIENE:

3 3 (N*1) (N*K) (K*1) (N*1) LA MATRICE HA ELEMENTO GENERICO IN CUI LINDICE j RAPPRESENTA LA VARIABILE (REGRESSORE) CONSIDERATA (j=1,2, …,K) MENTRE LINDICE i DENOTA LA i-ESIMA OSSERVAZIONE (i=1,2,…,N). OGNI COLONNA DI È UN VETTORE DI N OSSERVAZIONI COSTANTE PER REGRESSORI j INTERCETTA 1 2 ………K OSSERVAZIONI i 1 2 N

4 4 ASSUNZIONI PER STIME OLS 1.SPECIFICAZIONE LINEARE DEL MODELLO 2.a SONO NON STOCASTICI. 2.b IL RANGO DI È UGUALE A K

5 5 ALLORA TUTTI I VALORI AL DI FUORI DELLA DIAGONALE PRINCIPALE SONO NULLI E QUELLI SULLA DIAGONALE SONO UGUALI A, CIOÈ: 0

6 6 STIMA OLS OBIETTIVO: DETERMINARE IL VETTORE CHE MINIMIZZA LA QUANTITÀ DOVE: VETTORE (N*1) DEI RESIDUI VETTORE (N*1) DEI VALORI TEORICI VETTORE DELLE STIME OLS SOSTITUENDO E IN SI HA: AB

7 7 QUESTO PERCHÈ A E B SONO ENTRAMBI DUE SCALARI UGUALI. INFATTI A =SCALARE (1*K) (K*N) (N*1) B ANALOGAMENTE MINIMIZZANDO LA, CIOÈ: SI HA: LA MATRICE DETTA MATRICE CROSS- PRODUCT, HA CERTAMENTE LINVERSA per lipotesi che implica RANK =K ovvero NON SINGOLARE.

8 8 DIMENSIONI DELLE MATRICI MATRICE CROSS-PRODUCT = (K*N) (N*K)

9 9 VETTORE

10 10 PRODOTTO

11 11 DALLE RELAZIONI MATRICIALI VISTE SEGUONO DUE RISULTATI UTILI PER SUCCESSIVI SVILUPPI: 1) PERCHÈ 2) PERCHÈ: COME GIÀ VISTO E PERCHÈ: IL RISULTATO 1) CI DICE CHE IL PRODOTTO INCROCIATO TRA I REGRESSORI E GLI ERRORI È NULLO. CIÒ È LA TRADUZIONE CAMPIONARIA DELLA ASSUNZIONE, IN ALTRE PAROLE CHE I RESIDUI NON DEVONO DIPENDERE DAI REGRESSORI.

12 12 PROPRIETÀ DEGLI STIMATORI OLS VALORE ATTESO DI CON ALLORA: 0 VETTORE DI STIMATORI CORRETTI

13 13 VARIANZA DEGLI STIMATORI DATO CHE GLI ELEMENTI DI A SONO NON STOCASTICI. NB LA matrice cross product è simmetrica

14 14 PERTANTO: VEDIAMO SE TALE VARIANZA È MINIMA. RICORDANDO CHE, CONSIDERIAMO LA MATRICE ARBITRARIA E LO STIMATORE LINEARE alternativo. LA MEDIA DI È: CHE RISULTA UGUALE A SE E SOLO SE CALCOLIAMO ORA: QUESTO PERCHÈ

15 15 PERTANTO: MA = 0 = AFFINCHÈ PERTANTO: SI PUÒ DIMOSTRARE CHE LA MATRICE È POSITIVA SEMIDEFINITA. PERTANTO LA FORMA QUADRATICA AD ESSA ASSOCIATA È POSITIVA, ALLORA. QUANDO TALE FORMA QUADRATICA È NULLA, ALLORA TUTTI GLI ELEMENTI DI SONO ZERO E PERTANTO. QUINDI È BLUE

16 16 CONSISTENZA IN MEDIA QUADRATICA DEGLI STIMATORI OLS Gli stimatori dei minimi quadrati sono consistenti in media quadratica. Per dimostrare questa proprietà è necessaria unipotesi ulteriore, cioè Con matrice finita e non singolare. Si osservi che tale matrice contiene le medie delle variabili esplicative, dei loro quadrati e dei loro prodotti. E quindi ragionevole assumere che il limite di queste quantità, al divergere della numerosità campionaria, sia finito. Per dimostrare la consistenza in media quadratica è necessario verificare le due condizioni seguenti

17 17 La prima condizione è verificata: essendo gli stimatori OLS non distorti per n finito, lo sono anche asintoticamente. Per verificare la seconda condizione si considera il limite della matrice di varianza e covarianza di, Asintoticamente la matrice di varianza e covarianza converge ad una matrice nulla e di conseguenza le varianze degli stimatori tendono a zero.

18 18 STIMA DI Obiettivo : ricavare una stima della varianza dei termini di errore del modello. Poiché gli errori non sono osservabili pare ragionevole stimare utilizzando la devianza residua RSS. Il punto è determinare il divisore della devianza residua: la soluzione possiamo trovarla imponendo il vincolo che lo stimatore di appartenga alla classe degli stimatori corretti. dove M è una matrice SIMMETRICA e IDEMPOTENTE Matrice idempotente Una matrice simmetrica P è idempotente se PP = P.

19 19 Dalla Idempotenza e simmetria di M segue che Calcolando il valore atteso: si definisce traccia di una matrice, e si utilizza il simbolo tr(A), la somma dei valori di tutti gli elementi che stanno nella diagonale principale della matrice A. tr(AB) = tr(BA)

20 20 Dalla definizione di M si ha rappresenta lo stimatore corretto della varianza del termine di errore del modello. La radice quadrata dello stimatore, s, viene detta errore standard della stima.

21 21 Una spiegazione intuitiva della circostanza che lo stimatore non distorto è ottenuto dividendo la somma dei quadrati dei residui per nk, anziché per n, è costituita dal fatto che, benché si considerano n residui, soltanto nk sono linearmente indipendenti infatti le equazioni impongono k vincoli (si dimostra facilmente esplicitando il sistema che la somma dei residui e la somma dei prodotti dei residui per ciascuna delle variabili esplicative deve essere uguale a zero). Determinato il valore dei primi nk residui, gli ultimi dovranno essere tali da soddisfare la condizione sopra. Vi sono k vincoli, uno per ogni coefficiente di regressione stimato, e si perdono quindi k gradi di libertà.


Scaricare ppt "1 IL MODELLO DI REGRESSIONE MULTIPLA Per le N osservazioni possiamo scrivere: VETTORE COLONNA (N*1)"

Presentazioni simili


Annunci Google