La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

UNIVERSITA DEGLI STUDI DI PALERMO FACOLTA DI SCIENZE DELLA FORMAZIONE PRIMARIA POLO DIDATTICO ENNA Laboratorio di didattica della matematica TESINA Studenti:

Presentazioni simili


Presentazione sul tema: "UNIVERSITA DEGLI STUDI DI PALERMO FACOLTA DI SCIENZE DELLA FORMAZIONE PRIMARIA POLO DIDATTICO ENNA Laboratorio di didattica della matematica TESINA Studenti:"— Transcript della presentazione:

1 UNIVERSITA DEGLI STUDI DI PALERMO FACOLTA DI SCIENZE DELLA FORMAZIONE PRIMARIA POLO DIDATTICO ENNA Laboratorio di didattica della matematica TESINA Studenti: Annalisa Durisi, Rossana Bella, Simona Marotta, Giuseppina DArrigo, Valentina Gangi, Valeria Iemmolo Prof.re F. Spagnolo

2 Classe: 4^ Argomento : Aritmetica Finalità : padroneggiare abilità di calcolo orale e scritto Obiettivi : eseguire addizioni introduzione al concetto di variabile attività didattiche preparatorie allequazione di primo grado Attività : risoluzione di quadrati magici di ordine 4

3 Sistema i numeri 4, 6, 8, 22, 26, 28, 30 in modo da ottenere un quadrato magico, cioè un quadrato in cui la somma per righe, colonne e diagonali risulti sempre

4 Strategie corrette Strategia 1: verifica del numero esatto nellunica colonna completa di numeri. Strategia 2: verifica del numero esatto nellunica diagonale completa di numeri. Strategia 3: somma parziale dei numeri della prima colonna, aggiunta del numero 8 ed eliminazione dello stesso da quelli dati. Strategia 4: somma della seconda riga, utilizzando lo stesso procedimento della terza strategia, cioè somma parziale e aggiunta di un solo numero mancante (22) ed eliminazione del numero da quelli dati. Strategia 5: somma parziale dei numeri della quarta colonna, anchessa formata da tre numeri, inserimento del numero 26 ed eliminazione da quelli dati. Strategia 6: osservazione dei numeri rimasti nel quadrato e di quelli non utilizzati e inserimento nella quarta riga, formata dai numeri minori, dei due numeri maggiori 30 e 28 rimasti. Strategia 7: utilizzazione del procedimento inverso per completare la prima riga, cioè inserime- -nto degli ultimi numeri rimasti per esclusione.

5 Strategie errate Strategia 1 : non valuta che la prima colonna e la seconda riga sono composte da tre numeri, quindi, non utilizza il pre-calcolo per agevolare la somma mettendo i numeri a caso senza un senso logico, procedendo per tentativi ed errori; Strategia 2- non considera i numeri dati in aiuto da inserire nelle caselle vuote e ne utilizza altri scelti arbitrariamente, non rispettando la consegna; Strategia 3- utilizza più volte gli stessi numeri dati in aiuto, non rispettando la consegna.

6 Obiettivo Individuare e rappresentare moltiplicazioni con i percorsi, con gli oggetti, con i numeri. Testo:Germana Girotti - MAT MAT 2 - Carlo Signorelli Classe: II

7 Testo: Gilda Flaccavento Romano - UN TRENO DI NUMERI 2- Fabbri Classe: II

8 Dopo aver preso in esame la situazione problematica ed averne ipotizzato le possibili strategie risolutive, abbiamo concretamente sperimentato tale problema con due bambine di IV elementare. Lobiettivo principale della fase sperimentale è stato quello di verificare se le strategie da noi formulate fossero quelle realmente utilizzate dalle bambine o, se le stesse, procedessero in modo differente usando modalità risolutive diverse. Lo strumento usato per la rilevazione delle informazioni è stata lintervista basata su domande stimolo e somministrata durante lesecuzione del problema posto. In un primo momento, abbiamo chiesto loro se fossero disponibili ad essere registrate e dopo averle rassicurate che nessuna di noi avrebbe dato loro giudizi o valutato le loro competenze, abbiamo introdotto il problema riguardante la risoluzione del quadrato magico. Le bambine hanno attentamente letto la consegna riportata sul foglio, hanno osservato il quadrato da noi disegnato ed i numeri riportati sia allinterno che allesterno. A questo punto, abbiamo chiesto loro se la consegna fosse chiara e, successivamente, quali operazioni ritenevano opportuno usare per completare il quadrato. Nel dare questa risposta una di loro ha mostrato più sicurezza rispondendo che lunica operazione possibile era laddizione, laltra ha ritenuto opportuno provare con altre operazioni, ma si è subito resa conto che lunico modo, per lei, per risolvere il quadrato magico era usare laddizione.

9 Durante la sperimentazione ci siamo, così, rese conto che hanno effettivamente utilizzato come unica operazione risolutiva laddizione, aggiungendo, di volta in volta, un numero per ottenere la somma data. Le bambine lavoravano utilizzando due criteri diversi nella scelta dei numeri da addizionare; una di esse procedeva scegliendoli a caso e poi li verificava provando in un altro foglio la somma, laltra, invece, si orientava valutando la grandezza tra i numeri inseriti nel quadrato e quelli dati, facilitandosi così la risoluzione. Rispetto alle soluzioni da noi ipotizzate, si è verificata una concordanza in riferimento alle strategie n , mentre le strategia n.1-2 non sono state elaborate da nessuna delle due.strategie n , strategia n.1-2 A tal proposito, abbiamo loro chiesto come mai non avessero verificato il risultato della diagonale e della colonna completa di numeri, la risposta è stata che secondo loro doveva necessariamente essere corretta.

10 Obiettivo del gioco : potenziare le abilità di calcolo ed individuare le operazioni inverse. Principali fasi del gioco Spiegazione della procedura Facendo riferimento alla situazione-problema precedentemente svolta dalle bambine in fase di sperimentazione, linsegnante propone loro di dividere per 2 i numeri del quadrato magico per verificare la possibilità di costruirne uno nuovo, con un risultato diverso A questo punto, al fine di verificare la corretta comprensione della consegna e, quindi, chiarire le regole da utilizzare, linsegnante inizia a giocare con una delle due bambine.

11 S ituazione dazione Le bambine vengono lasciate libere di operare autonomamente; linsegnante, nel frattempo, osserva attentamente le diverse strategie utilizzate da entrambe e, successivamente, le invita a completare il quadrato magico nel minor tempo possibile, in modo da stimolare in loro la voglia di vincere. Entrambe procedono senza particolari difficoltà e arrivano alla corretta soluzione del nuovo quadrato e cioè che la somma delle colonne, delle diagonali e delle righe è L insegnante dà loro un ulteriore consegna chiedendo di creare autonomamente un quadrato servendosi anche di altre operazioni.

12 Fase di formulazione Le bambine si mostrano entusiaste ed elaborano le strategie risolutive necessarie e si osserva subito che propongono soluzioni diverse: una decide di aggiungere il numero 2, laltra invece di moltiplicare i numeri per 2, ma si rende subito conto che i numeri ottenuti sono gli stessi del quadrato magico iniziale; così decide di sottrarre il numero 2 da quelli dati. Il quadrato di Martina

13 Il quadrato di Maria Gabriella Dopo aver completato i quadrati magici, si invitano le bambine a confrontare i loro elaborati e si chiede di spiegare progressivamente le diverse modalità utilizzate. 22

14 Fase di validazione scopriamo la regola Sotto richiesta dellinsegnante ogni bambina spiega allaltra le diverse soluzioni date, cercando luna di convincere laltra ad accettare lipotesi sostenuta. Il docente a questo punto facendo da mediatore fa notare che le due ipotesi sono valide;le bambine giungono, infatti, alla conclusione che aggiungendo, togliendo, moltiplicando o dividendo la stessa quantità ad ogni numero del quadrato se ne possono ottenere tanti altri con somma uguale ed, infine, che tutto ciò avviene, sottolinea linsegnante, poiché moltiplicazione e divisione sono operazioni inverse, così come laddizione e la sottrazione.


Scaricare ppt "UNIVERSITA DEGLI STUDI DI PALERMO FACOLTA DI SCIENZE DELLA FORMAZIONE PRIMARIA POLO DIDATTICO ENNA Laboratorio di didattica della matematica TESINA Studenti:"

Presentazioni simili


Annunci Google