La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Gli insiemi N e Z I numeri naturali sono quelli che formano lelenco illimitato e a tutti noto I numeri naturali 1 0 1 2 3 4 5 6 7….. Linsieme N si può

Presentazioni simili


Presentazione sul tema: "Gli insiemi N e Z I numeri naturali sono quelli che formano lelenco illimitato e a tutti noto I numeri naturali 1 0 1 2 3 4 5 6 7….. Linsieme N si può"— Transcript della presentazione:

1 Gli insiemi N e Z I numeri naturali sono quelli che formano lelenco illimitato e a tutti noto I numeri naturali ….. Linsieme N si può rappresentare su una semiretta orientata, cioè una semiretta sulla quale sia fissato un verso di percorrenza Scelto un segmento a di lunghezza arbitraria, a partire dallorigine della semiretta lo riportiamo su di essa consecutivamente in modo da posizionare i numeri naturali sulla semiretta stessa: a Definizione e caratteristiche

2 Gli insiemi N e Z 2 Dalla rappresentazione grafica possiamo dedurre lordinamento di N: Diciamo che a è minore di b, e scriviamo a < b, se il punto corrispondente ad a viene prima del punto corrispondente a b sulla semiretta. Diciamo che a è maggiore di b, e scriviamo a > b, se il punto corrispondente ad a segue il punto corrispondente a b sulla semiretta a I numeri naturali Ordinamento

3 Gli insiemi N e Z 3 Dati due numeri naturali a e b, il numero c = a + b è il numero naturale che si ottiene contando b unità verso destra a partire da a: = Loperazione introdotta si chiama ADDIZIONE. a + b = c addendisomma Laddizione è unoperazione interna ad N perche la somma di due numeri naturali è sempre un numero naturale. Laddizione è commutativa, cioè a + b = b + a Laddizione è associativa, cioè (a + b) + c = a + (b + c) I numeri naturali Operazioni

4 Gli insiemi N e Z 4 Dati due numeri naturali a e b, il numero c = a b, se esiste, è il numero che addizionato a b dà a: = Loperazione introdotta si chiama SOTTRAZIONE. a b = c minuendodifferenza Il numero c può non esistere (la sottrazione non è unoperazione interna a N) sottraendo = ? I numeri naturali Operazioni La sottrazione è possibile solo se a b

5 Gli insiemi N e Z 5 La sottrazione non è né commutativa né associativa La sottrazione gode della proprietà invariantiva: la differenza tra due numeri a e b non cambia se ad entrambi si aggiunge o si toglie uno stesso numero: a – b = (a + k) – (b + k) = (a k) – (b k) con a k e b k I numeri naturali Operazioni

6 Gli insiemi N e Z 6 Una moltiplicazione tra numeri naturali è un modo abbreviato di scrivere una somma di addendi tutti uguali tra loro: = 8 Loperazione di moltiplicazione ci porta alla definizione di multiplo: a b = c prodottofattori a b sgnifica a + a + … + a b volte 1 volta2 volte3 volte4 volte Si dice che un numero naturale a è multiplo di un numero naturale b secondo n se a = b n. Per esempio: poiché 5 4 = 2020 è multiplo di 5 secondo 4 ma anche20 è multiplo di 4 secondo 5 I numeri naturali Operazioni

7 Gli insiemi N e Z ESEMPI 7 è commutativa, cioè a b = b a è associativa, cioè (a b) c = a (b c) La moltiplicazione gode delle stesse proprietà delladdizione: proprietà distributiva rispetto alladdizione e, quando è possibile, alla sottrazione: Vale inoltre la seguente proprietà: ( a ± b) c = (a c) ± (b c) e c (a ± b) = c a ± c b (2 + 5) 4 = (2 4) + (5 4) = = 28 6 (8 – 5) = 6 8 – 6 5 = 48 – 30 = 18 I numeri naturali Operazioni

8 Gli insiemi N e Z 8 Dati due numeri naturali a e b, con b 0, il numero c = a : b, se esiste, è il numero che, moltiplicato per b, è uguale ad a: Loperazione definita si chiama DIVISIONE. a : b = c dividendo quoziente a : b = c se e solo se c b = a 15 : 4 = ? Perché non esiste un numero naturale che, moltiplicato per 4, dà come prodotto 15. divisore Il numero c può non esistere, per esempio: Lesistenza di c è garantita solo se a è multiplo di b, da cui deriva che la divisione non è unoperazione interna a N. I numeri naturali Operazioni

9 Gli insiemi N e Z 9 proprietà invariantiva: il quoziente tra due numeri a e b non cambia se entrambi vengono moltiplicati o divisi per uno stesso numero non nullo. La divisione non è né commutativa, né associativa. proprietà distributiva (solo a sinistra) della divisione rispetto alladdizione e alla sottrazione (se queste operazioni sono possibili in N): a : b = (a k) : (b k)Per esempio:12 : 4 = (12 5) : (4 5) = 60 : 20 = 3 La divisione gode delle seguenti proprietà: a : b = (a : h) : (b : h)Per esempio:180 : 45 = (180 : 9) : (45 : 9) = 20 : 5 = 4 ( a ± b) : c = (a : c) ± (b : c)Per esempio:( ) : 5 = (15 : 5) + (20 : 5) = = 7 (27 – 12) : 3 = (27 : 3) – (12 : 3) = 9 – 4 = 5 La divisione non è però distributiva a destra, per esempio: 60 : (12 + 3) 60 : 15 = 4 non è uguale a (60 : 12) + (60 : 3) = 25 I numeri naturali Operazioni

10 Gli insiemi N e Z ESEMPI 10 Il numero q si dice quoziente intero di a : b, il numero r è il resto di tale divisione. Qualunque siano i numeri naturali a e b, con b 0, si può dimostrare che esistono e sono unici due naturali q e r tali che: a = b q + r con 0 r < b nella divisione 25 : 4, si ha che q = 6 e r = 1 perché 25 = nella divisione 314 : 23, si ha che q = 13 e r = 15 perché 314 = I numeri naturali Operazioni

11 Gli insiemi N e Z 11 Il numero 0 è lelemento neutro delladdizione, Da questultima proprietà segue la legge di annullamento del prodotto: a + 0 = 0 + a = a infatti: Inoltre: a 0 = 0 a = 0 Il prodotto di due numeri è zero se almeno uno di essi è uguale a zero. Il numero 1 è lelemento neutro della moltiplicazione, infatti: a 1 = 1 a = a I numeri naturali Operazioni

12 Gli insiemi N e Z 12 Insieme N dei numeri naturali: N = {0, 1, 2, 3, 4…} Insieme N o : N o = {1, 2, 3, 4…} ADDIZIONE a + b (interna) commutativa a + b = b + a associativa (a + b) + c = a + (b + c) elemento neutro a + 0 = 0 + a = a OperazioniProprietà SOTTRAZIONE a – b (con a b) invariantiva a – b = (a + c) – (b + c) a – b = (a c) – (b c) con a c e b c I numeri naturali Operazioni

13 Gli insiemi N e Z 13 OperazioniProprietà DIVISIONE ESATTA a : b (con b 0 e a multiplo di b) invariantiva a : b = (a c) : (b c) a : b = (a : c) : (b : c) distributiva (a + b) : c = a : c + b : c (a b) : c = a : c b : c MOLTIPLICAZIONE a b (interna) commutativa a b = b a associativa (a b) c = a (b c) distributiva a (b +c) = a b + a c elemento neutro a 1 = 1 a = a elemento assorbente a 0 = 0 a = 0 legge di annullamento del prodotto se a b = 0 a = 0 o b = 0 o a = b = 0 I numeri naturali Operazioni

14 Gli insiemi N e Z 14 Il prodotto di più numeri naturali uguali fra loro si abbrevia mediante il simbolo di potenza. Se a è un numero naturale e n è un numero naturale maggiore di 1, si pone Proprietà delle potenze a n = 0 0 non ha significato. a a a… a a 1 se n > 1 se n = 1 se n = 0 e a 0 n volte a m a n = a m + n esempio: = = 3 6 a m : a n = a m n con m > nesempio: 3 4 : 3 2 = 3 4 – 2 = 3 2 (a m ) n = a m n esempio: (3 4 ) 2 = = 3 8 (a b) n = a n b n esempio: (2 3) 4 = (a : b) n = a n : b n esempio: (8 : 2) 3 = 8 3 : 2 3 I numeri naturali La potenza

15 Gli insiemi N e Z 15 Un numero è divisibile per: 2 se termina per cifra pari (0 è ritenuto cifra pari) 3 o 9 se lo è la somma delle due cifre 5 se termina per 0 o per 5 4 o 25 se lo è il numero formato dalle ultime due cifre a destra, o termina con due zeri 11 se la differenza tra la somma delle cifre di posto dispari e la somma delle cifre di posto pari (o viceversa) è divisibile per 11 o è zero. I numeri naturali Criteri di divisibilità

16 Gli insiemi N e Z 16 Ci sono infiniti numeri primi: 2, 3, 5, 7, 11, 13, 17,19, 23, 29, … ma ad oggi non si conosce una regola che li possa generare tutti. Ad esempio: 288 = Se un numero maggiore di 1 non ha altri divisori allinfuori di se stesso e dellunità, si dice primo. Un numero che non è primo si può scomporre in modo unico nel prodotto di fattori primi. Due numeri si dicono primi tra loro se non hanno divisori comuni allinfuori dellunità. I numeri naturali Numeri primi e primi tra loro

17 Gli insiemi N e Z ESEMPIO 17 Dati due numeri naturali a e b, si chiama loro massimo comun divisore il maggiore fra i divisori comuni. Per indicarlo si scrive M.C.D. (a,b) Per determinare il M.C.D. tra due o più numeri si segue la regola: Quindi M.C.D. (40, 36) = 4 I divisori di 40 sono 1, 2, 4, 5, 8, 10, 20, 40 I divisori di 36 sono 1, 2, 3, 4, 6, 9, 12, 18, 36 Si determina la scomposizione di ciascun numero in fattori primi e si calcola il prodotto dei soli fattori comuni, prendendoli una sola volta, con il minimo esponente. Seguendo lesempio precedente: 40 = = Quindi M.C.D. (40, 36) = 2 2 = 4 I numeri naturali Il massimo comun divisore

18 Gli insiemi N e Z ESEMPIO 18 Dati due numeri naturali a e b, si chiama loro minimo comune multiplo il più piccolo fra i multipli comuni. Per indicarlo si scrive m.c.m. (a, b). Per determinare il m.c.m. di due o più numeri si segue la regola: Quindi m.c.m. (15, 12) = 60 I multipli di 15 sono 15, 30, 45, 60, 75, 90, 105, 120, … I multipli di 12 sono 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, … Si determina la scomposizione di ciascun numero in fattori primi e si calcola il prodotto di tutti i fattori comuni e non comuni, presi una sola volta, con il massimo esponente. Seguendo lesempio precedente: 15 = = Quindi m.c.m. (15, 12) = = 60 I numeri naturali Il minimo comune multiplo

19 Gli insiemi N e Z Spesso nella vita quotidiana si utilizzano numeri preceduti da un segno – 19 Ad esempio la temperatura di – 5° gradi indica che siamo 5 gradi sotto lo zero Sulla retta orientata, partendo dallorigine, possiamo muoverci in senso opposto rispetto a quello indicato dalla freccia. Possiamo cioè costruire la rappresentazione grafica dei numeri negativi. Ai numeri così costruiti si dà il nome di numeri interi o anche numeri interi relativi. I numeri che sono preceduti dal segno + si dicono positivi e si trovano a destra dello zero, quelli preceduti dal segno – si dicono negativi e si trovano a sinistra dello zero; il numero zero non è né positivo né negativo e si scrive senza alcun segno I numeri interi relativi Definizione e caratteristiche

20 Gli insiemi N e Z 20 Nei numeri positivi il segno + può essere sottinteso Sottoinsiemi di Z: Linsieme dei numeri relativi si indica con Z: Z = {…, 4, 3, 2, 1, 0, 1, 2, 3, 4, …} Insieme degli interi senza zero: Z 0 = {…, 4, 3, 2, 1, 1, 2, 3, 4, …} Insieme degli interi positivi: Z + = {1, 2, 3, 4, …} Insieme degli interi positivi: Z = {…, 4, 3, 2, 1} I numeri interi relativi Definizione e caratteristiche

21 Gli insiemi N e Z Alcune definizioni: 21 numeri concordi: numeri con lo stesso segno es. 7, 9 ; +3, +27 numeri discordi: numeri con segni diversi es. +2, 3 ; 2, +3 valore assoluto di un numero: numero stesso senza segno es. |7| = 7 ; |+7| = 7 numeri opposti: numeri con lo stesso valore assoluto e segno diverso es. +7, 7 I numeri interi relativi Definizione e caratteristiche

22 Gli insiemi N e Z Lordinamento dei numeri relativi corrisponde a quello dei punti associati sulla retta orientata dei numeri tra due numeri discordi, il numero positivo è maggiore del negativo es. +7 > 8 lo zero è maggiore di qualsiasi numero negativo e minore di qualsiasi numero positivo es. 0 > 3 ; 0 < +2 tra due numeri positivi è maggiore quello con valore assoluto maggiore es. +7 > +5 perché |+7| >|+5| tra due numeri negativi è maggiore quello con valore assoluto minore es. 2 > 8 perché |2| = 2 < |8| = 8 I numeri interi relativi Ordinamento Quindi:

23 Gli insiemi N e Z ESEMPI La somma di due numeri concordi si ottiene addizionando i valori assoluti dei due numeri attribuendo al risultato lo stesso segno degli addendi. 23 (+5) + (+7) = + (5 + 7) = +12 (4) + (3) = (4 + 3) = 7 La somma di due numeri discordi si ottiene facendo la differenza fra i valori assoluti dei numeri (il maggiore meno il minore) e attribuendo al risultato il segno del numero che ha valore assoluto maggiore. (+12) + (8) = + (12 8) = +4 (26) + (+15) = (26 15) = 11 ESEMPI I numeri interi relativi Addizione

24 Gli insiemi N e Z ESEMPIO La differenza a – b di due numeri interi è il numero c che, addizionato a b, restituisce a; si calcola facendo la somma del primo con lopposto del secondo. 24 (+5) (+7) = (+5) + (7) = 2 La sottrazione può sempre essere eseguita in Z e rappresenta loperazione inversa delladdizione. Quindi lespressione: (+2) (+3) = (+2) + (3) si trasforma in +2 – 3 omettendo il segno di addizione e le parentesi Poiché una sottrazione può sempre essere trasformata in unaddizione, si parla in generale di somma algebrica. I numeri interi relativi Differenza e somma algebrica

25 Gli insiemi N e Z ESEMPI Il prodotto di due numeri interi non nulli si esegue moltiplicando i valori assoluti dei due numeri e attribuendo al risultato il segno indicato nella seguente tabella: (+3) (+5) = +15 (+3) (5) = 15 (3) (5) = +15 (3) (+5) = 15 I numeri interi relativi Moltiplicazione, divisione e potenza

26 Gli insiemi N e Z ESEMPI La divisione a : b tra due numeri si può eseguire solo se il valore assoluto di a è multiplo del valore assoluto di b. In questo caso il quoziente c = a : b è un numero intero che ha : 26 per modulo il quoziente dei moduli di a e b segno negativo se a e b sono discordi segno positivo se a e b sono concordi (24) : (+6) = 4 (+24) : (6) = 4(+24) : (+6) = +4(+15) : (4) = non esiste in Z (24) : (6) = +4 I numeri interi relativi Moltiplicazione, divisione e potenza

27 Gli insiemi N e Z 27 se a è un numero positivo, il valore della potenza è ancora positivo qualunque sia lesponente: I numeri interi relativi La potenza La potenza a n con a Z e n N viene definita come nellinsieme dei numeri naturali. (+3) 4 = +81(+2) 5 = +32 se a è un numero negativo, il segno della potenza dipende dallesponente: Il prodotto di due numeri positivi è sempre positivo se n è pari si ha un numero positivo: se n è dispari si ha un numero negativo: (5) 2 = +25(2) 4 = +16 (2) 5 = 32(3) 3 = 27 Il prodotto di un numero pari di numeri negativi è sempre positivo, il prodotto di un numero dispari di numeri negativi è sempre negativo.


Scaricare ppt "Gli insiemi N e Z I numeri naturali sono quelli che formano lelenco illimitato e a tutti noto I numeri naturali 1 0 1 2 3 4 5 6 7….. Linsieme N si può"

Presentazioni simili


Annunci Google