La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Un modello di diffusione con mercato potenziale dinamico Dott.ssa Mariangela Guidolin Lezioni per il corso di Statistica (avanzato) Laurea Magistrale:

Presentazioni simili


Presentazione sul tema: "Un modello di diffusione con mercato potenziale dinamico Dott.ssa Mariangela Guidolin Lezioni per il corso di Statistica (avanzato) Laurea Magistrale:"— Transcript della presentazione:

1 Un modello di diffusione con mercato potenziale dinamico Dott.ssa Mariangela Guidolin Lezioni per il corso di Statistica (avanzato) Laurea Magistrale: Economia dei sistemi produttivi Prof. Renato Guseo Padova, 5-6/11/2007, aula B3,

2 Il problema Il mercato per le innovazioni appare piuttosto instabile ed incerto specialmente nella prima fase della diffusione: incubazione Pubblicità, attività di marketing e promozione hanno un ruolo centrale per cercare di superare questa fase Come possiamo valutare leffetto di queste azioni sul processo di diffusione? In che maniera agiscono sul processo di diffusione?

3 La nostra ipotesi Gli sforzi di comunicazione condizionano il processo di diffusione nella struttura del mercato potenziale. Il mercato potenziale m non è costante ma ha una struttura variabile dipendente dal processo di diffusione dellinformazione relativa allinnovazione. Di conseguenza: informazione e adozione sono due fasi separate che hanno bisogno di essere modellate separatamente.

4 Alcuni concetti teorici…. Cohen and Levinthal (1990): absorptive capacity è labilità di riconoscere il valore di una nuova informazione e utilizzarla. Questa capacità è tanto maggiore quanto maggiore è il livello di conoscenza previa sullargomento In altre parole: la ricettività alle innovazioni dipende da un background di informazione pertinente Questa capacità a livello individuale dipende da funzioni cognitive del singolo A livello di sistema, bisogna concentrare lattenzione sulla struttura della comunicazione del sistema: la costruzione di una conoscenza collettiva

5 …per la diffusione di innovazioni La diffusione di una innovazione dimostra che labsorptive capacity esiste in un sistema: m può essere considerato una misura di questa Quindi il mercato potenziale dipende dalla costruzione di una conoscenza collettiva, cioè dalla diffusione dellinformazione fra i membri di un sistema Come rappresentare la costruzione di questa conoscenza collettiva? Un insieme di connessioni fra individui, cioè un network che evolve

6 La struttura di un network che evolve Consideriamo un grafo G = (V, E) V = {1, 2, …., i, …., N} a linsieme dei vertici La cardinalità di V è N = c(V) Linsieme E delle coppie (i, j) chiamate archi E V * V, è linsieme di tutte le possibili relazioni binarie fra verticiV (anche riflessive ) La cardinalità di E è U = c(E) N^2 Nel nostro network siamo interessati a vedere come linformazione viene diffusa fra individui attraverso la creazione di archi Quindi la nostra unità di analisi è larco (i, j)

7 Network Automata Models Intorno dellarco (i, j) Invarianza rispetto a traslazioni Transition rule individuale

8 Mean Field Approximation Dal livello individuale passiamo a quello aggregato attraverso una mean field approximation (Guseo and Guidolin, 2007) La dinamica di diffusione dellinformazione è descritta per mezzo di una equazione differenziale del tipo La dinamica del network viene descritta in termini di positiva diffusione dellinformazione ma anche di effetti di resistenza e passaparola negativo

9 Se per semplicità escludiamo effetti di perdità di informazione otteniamo (t) è la percentuale di archi attivi al tempo t Se vogliamo analizzare il processo in termini assoluti moltiplichiamo (t) per U, ottenendo U (t) U (t) è il numero di archi attivi al tempo t Attivazione degli archi

10 Definizione di mercato potenziale U (t) è il numero di archi attivi nel network: rappresenta il risultato aggregato della diffusione di informazione in un sistema Vogliamo utilizzarlo per definire il mercato potenziale m, i.e. numero di potenziali adottanti Considerando E come un sottoinsieme quadrato di of V * V, la radice quadrata di U (t) rappresenta il numero di vertici attivi- persone informate nel network

11 Definizione di mercato potenziale Il numero di persone informate, k(t), può rappresentare lupper bound m(t), cioè una condizione limite che si realizza quando tutti quelli che sono informati adotteranno In generale, ci aspettiamo che m(t) minore di k(t) e lo definiamo così Da questa definizione possiamo notare che il mercato potenziale dipende da un processo di diffusione dellinformazione

12 Due processi a confronto

13 Un modello di diffusione con potenziale variabile Usiamo nuovamente la notazione dei Cellular Automata Models per definire il vero e proprio processo di adozione a livello individuale: scegliamo una transition rule che tenga conto di adozioni e fuoriuscite

14 Un modello di diffusione con potenziale variabile Applicando un potenziale variabile al modello di Bass (versione semplificata) otteniamo Seguendo Guseo (2004) si perviene alla soluzione di un modello di Bass standard

15 Il modello finale (senza uscite) Il mercato potenziale variabile influisce sulle adozioni in maniera moltiplicativa Co-evoluzione di processi La struttura del processo di comunicazione viene inferita solo usando dati aggregati di vendita!!!

16 Come linformazione agisce sulle adozioni

17 Risultati importanti Nuova formulazione del modello di Bass in cui informazione a adozione sono fasi separate Gli sforzi di comunicazione sono essenziali nelle primissime fasi del ciclo di vita quando bisogna stimolare la conoscenza relativa ad un nuovo prodotto Comunicazione inefficace significa più tempo per i concorrenti Possibilità di valutare limpatto di strategie di marketing e di confrontare differenti contesti di diffusione, utilizzando solo i dati di vendita!! Una possibile spiegazione dellaccorciarsi dei cicli di vita in generazioni successive (il paradosso delle generazioni successive)

18 La diffusione di un nuovo farmaco Fertifol (August 2005-July 2007) Data source: IMS Health S.p.A. Monitoraggio settimanale Disaggregazione spaziale: province Informazione disponibile per tutti i concorrenti

19 Fertifol: due applicazioni

20 Fertifol Nord-Est Estimation Results Asymptotic 95,0% Asymptotic Confidence Interval Parameter Estimate Standard Error Lower Upper K ,0 9709, , ,0 qc 0, , , , pc 0, , , , qs 0, , , , ps 0, , , , Analysis of Variance Source Sum of Squares Df Mean Square Model 5,61123E11 5 1,12225E11 Residual 8,39324E , Total 5,61131E11 98 Total (Corr.) 2,12709E11 97 R-Squared = 99,9961 percent R-Squared (adjusted for d.f.) = 99,9959 percent Standard Error of Est. = 300,416 Mean absolute error = 244,375 Durbin-Watson statistic = 0,556333

21 Fertifol Centro Estimation Results Asymptotic 95,0% Asymptotic Confidence Interval Parameter Estimate Standard Error Lower Upper K , , , ,0 qc 0, , , , pc 0, , , , qs 0, , , , ps 0, , , , Analysis of Variance Source Sum of Squares Df Mean Square Model 1,64263E12 5 3,28526E11 Residual 1,99934E , Total 1,64265E12 98 Total (Corr.) 5,99435E11 97 R-Squared = 99,9967 percent R-Squared (adjusted for d.f.) = 99,9965 percent Standard Error of Est. = 463,662 Mean absolute error = 360,123 Durbin-Watson statistic = 0,476585

22 Fertifol: Nord-Est vs. Centro

23 Fertifol Centro: Bass model

24 Fertifol Nord-Est: Bass model

25 Conclusioni Uso manageriale del modello: permette confronti fra contesti differenti Il modello e la sua implementazione sono piuttosto semplici: utile e utilizzabile In vari casi questo modello può essere una migliore alternativa del modello di Bass standard, evitando noti problemi di sovrastima nella prima parte del ciclo e sottostima del mercato potenziale Come capire se le differenze fra i due modelli sono importanti o no? Un test può essere condotto attraverso la correlazione parziale e la corrispondente statistica F

26 Riferimenti Bass, Frank M A new product growth model for consumer durables. Management Science. 15, Cohen, Wesley M., Daniel A. Levinthal Absorptive Capacity: A new Perspective on Learning and Innovation. Administrative Science Quarterly Guseo, Renato, Mariangela Guidolin Cellular Automata and Riccati Equation Models for Diffusion of Innovations. Statistical Methods and Applications Guseo, Renato, Mariangela Guidolin Modelling a Dynamic Market Potential: A Class of Automata Networks for Diffusion of Innovations Driven by Riccati Equations (submitted) Muller, Eitan, Renana Peres, Vijay Mahajan Innovation Diffusion and New Product Growth: Beyond a Theory of Communications. Working Paper Rogers, Everett M Diffusion of Innovations. Free Press, New York


Scaricare ppt "Un modello di diffusione con mercato potenziale dinamico Dott.ssa Mariangela Guidolin Lezioni per il corso di Statistica (avanzato) Laurea Magistrale:"

Presentazioni simili


Annunci Google