La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

14 ottobre 2010Il Fenomeno Sonoro1 Acustica Applicata Angelo Farina Dip. di Ingegneria Industriale - Università

Copie: 2
14 ottobre 2010Il Fenomeno Sonoro1 Acustica Applicata Angelo Farina Dip. di Ingegneria Industriale - Università

14 ottobre 2010Il Fenomeno Sonoro1 Acustica Applicata Angelo Farina Dip. di Ingegneria Industriale - Università

Presentazioni simili


Presentazione sul tema: "14 ottobre 2010Il Fenomeno Sonoro1 Acustica Applicata Angelo Farina Dip. di Ingegneria Industriale - Università"— Transcript della presentazione:

1 14 ottobre 2010Il Fenomeno Sonoro1 Acustica Applicata Angelo Farina Dip. di Ingegneria Industriale - Università di Parma Parco Area delle Scienze 181/A, Parma – Italy

2 14 ottobre 2010Il Fenomeno Sonoro2 Fenomeno sonoro

3 14 ottobre 2010Il Fenomeno Sonoro3 IL SUONO Il suono è generato dalla variazione di pressione in un mezzo materiale (fluido o solido) che si propaga senza trasporto di materia. Esso è caratterizzato da alcune grandezze fondamentali quali l'Ampiezza, la frequenza o il periodo di oscillazione, la lunghezza d'onda e la celerità di propagazione nel mezzo attraversato.

4 14 ottobre 2010Il Fenomeno Sonoro4 Fenomeno sonoro: generalità Il fenomeno sonoro è caratterizzato dalla propagazione di energia meccanica dovuta al rapido succedersi di compressioni ed espansioni di un mezzo elastico; tale energia, che ha origine in una sorgente sonora, si propaga nel mezzo stesso per onde con velocità finita. Perché il fenomeno nasca e si propaghi occorre dunque che esista: una sorgente sonora un mezzo elastico

5 14 ottobre 2010Il Fenomeno Sonoro5 Sorgente sonora (1): Sorgente sonora: superficie piana che si muove di moto armonico semplice ad una estremità di un condotto di lunghezza infinita nel quale si trova un mezzo elastico in quiete. Compressioni Rarefazioni

6 14 ottobre 2010Il Fenomeno Sonoro6 Sorgente sonora (2): Il moto armonico del pistone è caratterizzato dalla frequenza f con cui la superficie piana si muove. f = frequenza, numero di cicli compiuti dalla superficie piana in un secondo e viene espressa in hertz (Hz); T = periodo, tempo necessario a compiere un ciclo; = velocità angolare; Relazioni tra le varie grandezze: f = 1/T ed f = / 2 (Hz) Se la frequenza del fenomeno è compresa tra 20 e Hz, la perturbazione è percepita dallorecchio delluomo e si parlerà di fenomeno acustico o sonoro.

7 14 ottobre 2010Il Fenomeno Sonoro7 Sorgente sonora (3): La superficie del pistone si muove di moto armonico semplice: spostamento = s = s o cos( t), velocità = v = ds/dt = - s o sen ( t), accelerazione = a = dv/dt = - 2 s o cos( t), dove s o rappresenta il valore dello spostamento massimo della superficie del pistone.

8 14 ottobre 2010Il Fenomeno Sonoro8 Mezzo elastico: Le proprietà elastiche e la massa del mezzo elastico stabiliscono la velocità con cui la perturbazione si trasmette e la quantità di energia meccanica trasferita dalla sorgente nella unità di tempo (W).

9 14 ottobre 2010Il Fenomeno Sonoro9 Velocità di propagazione e lunghezza donda: La perturbazione, generata nel mezzo elastico dal movimento delle particelle a contatto con la superficie vibrante della sorgente, si propaga con una velocità c 0 che, nel caso dellaria secca e alla temperatura t (°C), vale: c 0 = t (m/s) la lunghezza donda, fissata la frequenza f del moto armonico della sorgente, dipende dal valore della velocità c 0 secondo la relazione: (m)

10 14 ottobre 2010Il Fenomeno Sonoro10 Legame frequenza-lunghezza donda: Allaumentare della frequenza si riduce la lunghezza donda della perturbazione sonora

11 14 ottobre 2010Il Fenomeno Sonoro11 Velocità di propagazione in mezzi diversi: Velocità del suono in acqua distillata Velocità del suono in mezzi diversi Velocità del suono in 20°C 340 m/s

12 14 ottobre 2010Il Fenomeno Sonoro12 Grandezze fisiche: Le grandezze fisiche più importanti che caratterizzano il fenomeno sonoro sono: Pressione sonora p Pa Velocità delle particelle v m/s Densità di energia sonora D J/m 3 Intensità sonora I W/m 2 Potenza sonora W W Grandezze di campo Grandezze energetiche

13 14 ottobre 2010Il Fenomeno Sonoro13 Pressione sonora, velocità ed impedenza Al passaggio dellonda sonora nel mezzo elastico si originano una sequenza di compressioni ed espansioni dello stesso, ciò implica una variazione della pressione ambiente rispetto al valore di equilibrio. Tali compressioni ed espansioni danno origine alla pressione acustica p che dipende dalla frequenza ed ampiezza del moto armonico della sorgente, dalle caratteristiche elastiche e dalla massa del mezzo acustico. Il legame tra la velocità delle particelle del mezzo elastico v e pressione acustica p vale: (kg/m 2 s) dove 0 è la densità del mezzo elastico ed il prodotto 0 c 0 è detta impedenza acustica (Z) dellonda piana (kg/m 2 s)(rayl).

14 14 ottobre 2010Il Fenomeno Sonoro14 Valore medio efficace (RMS) di p e v Quando la forma donda è complessa, diventa ambigua la definizione dellampiezza media del segnale da analizzare, e luso del valore istantaneo massimo non è rappresentativa della percezione umana. Si impiega allora il cosiddetto Valore Medio Efficace o Valore RMS del segnale stesso:

15 14 ottobre 2010Il Fenomeno Sonoro15 Energia contenuta nel mezzo elastico: Nel caso di onde piane in un mezzo elastico non viscoso, lenergia per unità di volume o densità di energia sonora w trasferita al mezzo è data dalla somma di due contributi: (J/m 3 ) - ENERGIA CINETICA dove v eff è la velocità della superficie del pistone e, per onde piane in un mezzo non viscoso, anche delle particelle del mezzo. (J/m 3 ) - ENERGIA POTENZIALE essa correla una grandezza direttamente misurabile, come il valore efficacie della pressione sonora p eff, con lenergia immagazzinata causa la compressione elastica del mezzo.

16 14 ottobre 2010Il Fenomeno Sonoro16 Energia contenuta nel mezzo elastico: Nel caso di onde piane, i due contributi suddetti sono fra loro uguali. Nel caso generale di onde non piane, o in presenza di onde stazionarie (che rimbalzano avanti ed indietro) lenergia non è equamente suddivisa fra cinetica e potenziale, ed occorre valutare separatamente, in ciascun punto e in ciascun istante, i due contributi e sommarli: (J/m 3 ) In generale, quindi, la valutazione corretta del contenuto energetico del campo sonoro richiede la simultanea ed indipendente misurazione sia della pressione sonora, sia della velocità delle particelle (che è un vettore con 3 componenti cartesiane).

17 14 ottobre 2010Il Fenomeno Sonoro17 Intensità sonora: LIntensità sonora I è il parametro di valutazione del flusso di energia che attraversa una determinata superficie. E definita come lenergia che nellunità di tempo attraversa, in direzione normale, una superficie unitaria (W/m 2 ). Lintensità è un parametro vettoriale definito da un modulo, una direzione ed un verso: Nel caso di onde piane, in un mezzo in quiete non viscoso, tra densità ed intensità di energia sonora, intercorre la relazione: I = D c 0 (W/m 2 )

18 14 ottobre 2010Il Fenomeno Sonoro18 Potenza sonora (1): Descrive la capacità di emissione sonora di una sorgente e viene misurata in Watt (W). La potenza non può essere misurata direttamente, ma richiede metodi particolari per la sua determinazione. La potenza sonora è un descrittore univoco di una sorgente sonora è, infatti, una quantità oggettiva indipendente dallambiente in cui la sorgente è posta.

19 14 ottobre 2010Il Fenomeno Sonoro19 Potenza sonora (2): Considerata una superficie chiusa S che racchiude una sorgente sonora, la potenza acustica W emessa dalla sorgente è data dallintegrale dellintensità sonora I sulla superficie considerata: Nel caso in cui la superficie chiusa S sia scomponibile in N superfici S i elementari, lespressione della potenza sonora diventa:

20 14 ottobre 2010Il Fenomeno Sonoro20 Livelli sonori – scala dei decibel (1): Cosa sono i decibel e perché si usano?: Le potenze e le intensità sonore associate ai fenomeni che lorecchio delluomo può percepire hanno unampia dinamica: 1 pW/m 2 (soglia delludibile) 1 W/m 2 (soglia del dolore) 20 Pa (soglia delludibile) 20 Pa (soglia del dolore) Per questo motivo si fa uso di una scala logaritmica, nella quale, al valore della grandezza in esame, si fa corrispondere il logaritmo del rapporto tra quello stesso valore ed un valore prefissato di riferimento. Il vantaggio che deriva dalluso della scala del decibel consiste nella evidente riduzione del campo di variabilità riduzione della dinamica;

21 14 ottobre 2010Il Fenomeno Sonoro21 Livelli sonori – scala dei decibel (2): Si definisce livello di pressione sonora L p la quantità: L p = 10 log p 2 /p rif 2 = 20 log p/p rif p rif = 20 Pa Si definisce livello di velocità sonora L v la quantità: L v = 10 log v 2 /v rif 2 = 20 log v/v rif v rif = 50 nm/s. Si definisce livello di intensità sonora L I la quantità: L I = 10 log I/I rif I rif = W/m 2. Si definisce livello di densità sonora L D la quantità: L D = 10 log D/D rif D rif = 3· J/m 3. Nel caso di onde piane, in un mezzo in quiete non viscoso ( o c o = 400 rayl): p/u= o c o I = p 2 / o c o =D·c 0 => quindi L p = L v = L I = L D

22 14 ottobre 2010Il Fenomeno Sonoro22 Livelli sonori – scala dei decibel (3): Si definisce infine livello di potenza sonora L W la quantità: L W = 10 log W/W rif W rif = W. Ma, mentre i 4 livelli di campo precedenti si identificano in un unico valore numerico (almeno nel caso dellonda piana e progressiva), il livello di potenza assume, in generale, un valore assai diverso, sovente molto maggiore! Sempre nel caso di onda piana e progressiva (pistone di area S allestremità di un tubo), il legame fra livello di potenza e livello di intensità è: L W = L I + 10 log S/S o =L I + 10 log S (dB) Questa relazione, in realtà, è sempre vera, anche nel caso di altri tipi di onde, purchè la superficie S considerata rappresenti lintera superficie attraverso cui la potenza emessa fuoriesce dalla sorgente.


Scaricare ppt "14 ottobre 2010Il Fenomeno Sonoro1 Acustica Applicata Angelo Farina Dip. di Ingegneria Industriale - Università"

Presentazioni simili


Annunci Google