La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Metodi Quantitativi per Economia, Finanza e Management Lezione n°3.

Presentazioni simili


Presentazione sul tema: "Metodi Quantitativi per Economia, Finanza e Management Lezione n°3."— Transcript della presentazione:

1 Metodi Quantitativi per Economia, Finanza e Management Lezione n°3

2 Le considerazioni che portano alla scelta della dimensione del campione toccano molteplici aspetti. Tra questi quelli di maggior rilievo sono: Costo di rilevazione Tempo di rilevazione Livello di precisione delle stime ottenute: –Variabilità del carattere indagato nella popolazione di riferimento –Errore campionario –Disegno campionario –Scelta dello stimatore Il campionamento La dimensione del campione

3 Indicazioni pratiche: Campioni estratti da Customer Database per analisi di profilazione: unità campionarie (consumer) Campioni estratti da Customer Database per attività di mailing (Test): unità campionarie (consumer) Campioni rilevati per survey ad hoc: unità campionarie (consumer) Campioni rilevati per survey continuative (Panel): unità campionarie (consumer) Il campionamento La dimensione del campione

4 Tipologie di dati Qualitativi dati espressi in forma verbale, solitamente classificati in categorie Quantitativi dati espressi in forma numerica. si distinguono in: –discreti dati caratterizzati da una quantità finita o infinita numerabile di classi di misura –continui risposta numerica derivamte da un processo di misurazione che fornisce indicazioni puntuali all’interno di un continuum Territoriali Date

5 Nominale usato per dati qualitativi, che vengono così classificati in categorie distinte senza alcun ordine implicito (es. professione del cliente) Ordinale le categorie presentano un ordine implicito; consente di stabilire una relazione d’ordine tra le diverse categorie, ma nessuna asserzione numerica, ovvero si può dire che un determinato valore è più grande di un altro, ma non di quanto Tipologie di dati qualitativi

6 Scala di rapporti con questa tipologia si può dire di quanto una categoria è maggiore di un’altra; è fissato un valore “0” della scala. es. Le variabili spesa media e tempo impiegato sono misurate a livello di rapporto,ovvero rientrano in una scala di valutazione comparativa Scala di intervalli presenta le stesse caratteristiche della precedente, ma non possiede un valore “0” fissato. es. In una indagine sui clienti di un supermercato, il loro livello di soddisfazione può essere adeguatamente rappresentato mediante una scala di valutazione compresa tra 1 e 9, ciò che posso asserire è che la differenza tra 2 e 3 è la medesima di quella tra 8 e 9, ma non che 8 sia il doppio di 4. Tipologie di dati quantitativi

7 L’analisi statistica dei dati Statistica descrittiva insieme dei metodi che riguardano la rappresentazione e sintesi di un insieme di dati al fine di evidenziarne le caratteristiche principali Statistica inferenziale insieme dei metodi che permettono la stima di una caratteristica di una popolazione basandosi sull’analisi di un campione Totalità degli elementi presi in esame dalla indagine La parte di popolazione selezionata per l’analisi Misura riassuntiva, calcolata sui dati campionari, utile per descrivere una caratteristica non nota della popolazione

8 Statistica descrittiva univariata Nella statistica descrittiva univariata possiamo trovare due principali metodologie usate per rappresentare i dati analizzati: Distribuzioni di frequenza Misure di sintesi: –Misure di tendenza centrale e non centrale; –Misure di dispersione; –Misure della forma della distribuzione

9 Le distribuzioni di frequenza Frequenza assoluta: è un primo livello di sintesi dei dati- consiste nell’associare a ciascuna categoria, o modalità, il numero di volte in cui compare nei dati Distribuzione di frequenza: insieme delle modalità e delle loro frequenze Frequenza relativa: rapporto tra la frequenza assoluta ed il numero complessivo delle osservazioni effettuate. I due tipi di frequenze vengono usati con dati quantitativi, qualitativi ordinali, quantitativi discreti. p= n/ N

10 Rappresentazione grafica var.qualitative: Diagr. a barre: nell’asse delle ascisse ci sono le categorie, senza un ordine preciso; in quello delle ordinate le frequenze assolute/relative corrispondenti alle diverse modalità Diagr. a torta: la circonferenza è divisa proporzionalmente alle frequenze Diagramma a torta Le distribuzioni di frequenza

11 Rappresentazione grafica var.quantitative discrete: Diagr. delle frequenze: nell’asse delle ascisse ci sono i valori assunti dalla var. discreta (quindi ha un significato quantitativo); l’altezza delle barre è proporzionale alle frequenze relative o assolute del valore stesso Istogramma:nell’asse delle ascisse ci sono le classi degli intervalli considerati; l’asse delle ordinate rappresenta la densità di frequenza; l’area del rettangolo corrisponde alla frequenza della classe stessa. Le distribuzioni di frequenza

12 Misure di sintesi Misure di tendenza centrale: Media aritmetica Mediana Moda Misure di tendenza non centrale: Quantili Percentili Misure di dispersione: Campo di variazione Differenza interquantile Varianza Scarto quadratico medio Coefficiente di variazione Misure di forma della distribuzione: Skewness Kurtosis

13 Misure di Tendenza Centrale Tendenza Centrale MediaMediana Moda Valore centrale delle osservazioni ordinate Valore più frequente Media Aritmetica

14 La misura di tendenza centrale più comune Media = somma dei valori diviso il numero di valori Influenzata da valori estremi (outlier) Media = Media = 4

15 Mediana In una lista ordinata, la mediana è il valore “centrale” (50% sopra, 50% sotto) Non influenzata da valori estremi Mediana = Mediana = 3

16 Moda Valore che occorre più frequentemente Non influenzata da valori estremi Usata sia per dati numerici che categorici Può non esserci una moda Ci può essere più di una moda Moda = No Moda


Scaricare ppt "Metodi Quantitativi per Economia, Finanza e Management Lezione n°3."

Presentazioni simili


Annunci Google