La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Composti Sono costituiti da atomi di specie diverse.

Presentazioni simili


Presentazione sul tema: "Composti Sono costituiti da atomi di specie diverse."— Transcript della presentazione:

1 Composti Sono costituiti da atomi di specie diverse.
Possono essere formati da: Molecole Concatenazioni di atomi Ioni

2 Ioni Un elemento e’ caratterizato dal suo numero atomico.
Nell’atomo neutro il numero di elettroni e’ uguale a quello di protoni. Atomi che hanno ceduto o aquistato elettroni rispetto all’atomo neutro si dicono ioni: Catione + Anione -

3 Le formule delle sostanze
Le sostanze elementari ed i composti sono rappresentati graficamente con simboli convenzionali: Le formule chimiche FORMULA MINIMA (stechiometrica o elementare): si ricava dall’analisi elementare della sostanza Es NaCl; H8O4N2S; SiO2 FORMULA MOLECOLARE: Quanti atomi di ciascun elemento entrano a fare parte di una molecola dicomposto Es: O2, H2O2, C6H6, P4, H2O, CO2 Alcune sostanze NON sono costituite da molecole discrete e pertanto esse sono identificate dalla sola formula minima: Es: NaCl, CaCl2, Fe, C, SiO2 IMPORTANTE: riguarda la definizione di molecola

4 Le formule delle sostanze
FORMULA IONICA: i composti possono essere costituiti da atomi o gruppi di atomi con una carica elettrica risultante. L’insieme di questi gruppi in un composto deve essere tale che la carica risultante totale sia nulla. E’ il caso dei composti salini H8O4N2S (NH4)2SO4 2(NH4)+, (SO4)2-

5 Le formule delle sostanze
FORMULA DI STRUTTURA: Rappresentazione schematica della disposizione nello spazio degli atomi in una molecola CO2, CH4, C2H6O, HNO3 CH3CH2OH, H+, NO3-

6 Reazione chimica La combinazione degli atomi in un composto puo’ cambiare solo quando avviene una reazione chimica Una reazione chimica cambia il rapporto con cui gli atomi si combinano, ma non altera la natura degli atomi C + O2 CO2

7 Equazione chimica aA + bB cC + dD reagenti prodotti
Conservazione della massa: la massa totale dei reagenti e dei prodotti non varia durante la reazione. Si deve avere lo stesso numero di atomi per ogni elemento, anche se in composti differenti, in ambedue i membri dell’equazione.

8 N è il numero di nuclidi che stanno in esattamente 12 g di 12C.
La mole La mole è la quantità di sostanza che contiene un numero N di particelle che devono essere specificate. N è il numero di nuclidi che stanno in esattamente 12 g di 12C.

9 La massa in g di una mole di 12C è per definizione 12 g.
La mole La massa in g di una mole di 12C è per definizione 12 g. N = 6, (36) ×1023 Poiché N è un numero per mole, esso ha unità di misura mol-1 ed è chiamata costante di Avogadro.  N = 6, (36) ×1023 mol-1

10 Una mole di sostanza diverse ha peso diverso !
Mole e massa molare Una mole di sostanza diverse ha peso diverso ! In una reazione o in una formula chimica contano le moli, non i grammi!

11 Una mole di sostanza diverse ha peso diverso !
Mole e massa molare Una mole di sostanza diverse ha peso diverso ! In una reazione o in una formula chimica contano le moli, non i grammi! Es: 2H2 + O H2O

12 Massa molare Rapporto fra massa (in grammi) e quantità di sostanza (in moli), quindi ha come unità di misura g mol-1. Si indica con M

13 Stechiometria g=g*mol-1*mol grammi di sostanza= massa molare X n.moli
g *mol-1 =g/mol Massa molare= grammi/ n.moli n. moli= grammi/ massa molare mol =g/g*mol-1

14 Chimica nucleare

15 Unico capitolo del Corso di chimica generale in cui sono permesse “alchimie”

16 Le forze di legame nel nucleo
Protoni e neutroni esistono anche liberi, ovvero non vincolati nel nucleo di un atomo Il NEUTRONE libero, è una particella instabile e tende a decadere (td ca. 9x102 s ), liberando un elettrone ed un protone Il PROTONE libero, è una particella stabile (td ca s ) La maggior parte (non tutti) dei nuclidi sono isotopi stabili, ovvero tali che un consistente numero di protoni e neutroni si trova in un volume molto piccolo (il nucleo dell’atomo)

17 Le forze di legame nel nucleo
Questo è contrario ai principi della elettrostatica, in base alla quale particelle aventi carica dello stesso segno si respingono Esiste dunque un tipo di forza di attrazione che ,alle distanze tipiche fra i nucleoni del nucleo, è molto piu’ grande della forza di repulsione elettrostatica Essa è genericamente chiamata: FORZA FORTE

18 Interazione nucleo-protone
Le forze nucleari, che tengono insieme i nucleoni dentro un nucleo, sono forze molto forti fm=10-15 m

19 Le particelle sub-atomiche
I mesoni sono particelle subatomiche, di massa circa 1/5 dei nucleoni, e sono responsabili delle forze nucleari I mesoni sono continuamente scambiate tra nucleoni e l’effetto dello scambio è quello di creare un legame molto forte tra i nucleoni Comunque……. La spiegazione fisica delle forze nucleari noné negli scopi di questo Corso. Ci interessa sapere le consequenze di tali forze sulla stabilità relativa dei vari nuclidi e sulle consequenze di tipo ENERGETICO

20 Difetto di massa Energia e massa sono correlate dalla equazione di Einstein E=mc c=2.998X108 m s-1 I nucleoni, quando fanno parte di un nucleo, hanno MASSA MINORE di quando sono liberi La energia perduta dai nucleoni corrisponde all’energia con cui essi sono legati nel nucleo

21 Difetto di massa Per entrare a fare parte di un nucleo ogni nucleone “paga” un contributo energetico, per pagare questo contributo lui “attinge” dalla sua massa, trasformandola in energia sulla base della equazione di Einstein E=mc c=2.998X108 m s-1

22 Difetto di massa E=mc2 c=2.998X108 m s-1 Es: 16O M= 15,994915 u.m.a.
p=1, u.m.a. n=1, u.m.a. ……. Difetto di massa= 0, u.m.a 0,13701 g mol-1 130 mg su 16 g, … tanta roba… 1,23 x 1013 J mol-1

23 Difetto di massa 1,23 x 1013 J mol-1 0,13701 g mol-1 D
Ca.9 x 105 J mol-1 CH4

24 Difetto di massa Il difetto di massa è dunque una ENERGIA, e si definisce come la Energia di legame nucleare E/A= energia di legame media per nucleone La perdita media di ciascun nucleone è la misura di quanto un nucleone sia legato nel nucleo

25 Energia di reazioni nucleari
FUSIONE= 2 nuclidi leggeri si uniscono per dare un nuclide piu’ pesante FISSIONE= 1 nuclide pesante si scinde in 2 nuclidi più leggeri Tra poco torneremo su questo aspetto

26 Fusione nucleare 21H H 42He n 21D T 42He n

27 Distribuzione naturale dei nuclidi stabili
Z ed N pari sono i piu’ stabili Z o N dispari Z ed N dispari sono i meno stabili N è sempre  Z All’aumentare di Z, N diventa sempre piu’ grande Nella distribuzione dei nuclidi stabili Z ed N pari sono i piu’ numerosi Neutroni e protoni tendono ad accoppiarsi tra di loro

28 Decadimento radioattivo
Processo mediante il quale un nuclide naturale o artificiale si trasforma spontaneamente in un altro nuclide Si libera energia, sotto forma di radiazione elettromagnetica (raggi g) o di particelle leggere. RADIOATTIVITA’

29 Meccanismi di Decadimento
Decadimento a Decadimento b- n p+b-

30 Meccanismi di Decadimento meno comuni
Decadimento b+ p + n + b+ Cattura elettronica e- + p+ n

31 Tempo di dimezzamento t1/2
Tempo necessario affinché un certo numero di nuclidi si sia ridotto della metà Il decadimento, come molti fenomeni chimici, è un processo esponenziale e come tale è regolato da una funzione del tipo y=Ce-At

32 Tempo di dimezzamento Z A t 1/2 K 19 40 109 a b-, ce 0,0119 Ce 58 142
Elemento Z A t 1/2 decadimento abbondanza naturale % K 19 40 109 a b-, ce 0,0119 Ce 58 142 107 a b - b - 11,1 Tl 81 206 4,19 m b - Pb 82 212 10,6 h 204 a 1,48

33 Tempo di dimezzamento Elementi con Z <81: Isotopi stabili + 34 isotopi instabili 81  Z 83: Isotopi stabili + 12 isotopi instabili 84  Z 92: Tutti instabili con t 1/2 < 10 7 a tranne 232Th, 235U, 238U 81Tl, 82Pb, 83Bi, 83Po

34 Non dovrebbero essere già “esauriti” da milioni di anni?
Famiglie radioattive Tutti gli isotopi degli elementi dal Polonio all’Uranio sono radioattivi. Molti di essi hanno tempi di dimezzamento corti, anche nell’ordine di alcune ore Domanda: se alcuni nuclidi hanno tempi di dimezzamento corti, come fanno ad esistere in natura? Non dovrebbero essere già “esauriti” da milioni di anni? NO, se essi sono prodotti da nuclidi con tempi di dimezzamento lunghi, che continuano a “rifornire” costantemente di quel determinato isotopo Esistono alcuni isotopi radioattivi con tempi di dimezzamento molto lunghi (ca 107 a) che garantiscono la presenza in natura di una quantità costante di tutta una serie di nuclidi con tempi di dimezzamento molto piu’ brevi Si definisce pertanto una serie di famiglie di decadimento

35 Famiglie radioattive Serie 4n+2

36 Famiglie radioattive Serie 4n+3

37 Famiglie radioattive Serie 4n+1 Serie 4n

38 Fissione nucleare La trasformazione di fissione nucleare dovrebbe essere spontanea, perché è accompagnata da un enorme guadagno energetico Vi è pero’ una barriera di potenziale che impedisce una reazione di fissione e fa si che, spontaneamente, gli isotopi stabili subiscano il processo di decadimento, molto meno “vantaggioso” in termini energetici

39 Fissione nucleare 23592U + n 9336Kr + 14056Ba + 3 n 23592U + n 9038Sr
14454Xe + 2 n

40 Fissione nucleare 23592U + n 9336Kr + 14056Ba + 3 n 23592U + n 9038Sr
14454Xe + 2 n

41 Modello a goccia Per poter dividere un nucleo, è necessario che questo assuma una configurazione allungata, che è assai sfavorita da un punto di vista energetico Tale configurazione puo’ essere raggiunta solo se il nucleo viene “bombardato” con una sorgente di energia, quale un fascio di neutroni

42 Reazioni a catena 23592U+ n 9336Kr+ 14056Ba +3n 9038Sr+ 14454Xe +2n
9336Kr Ba +3n 9038Sr Xe +2n Reazione a catena

43 Reazioni a catena L’isotopo naturale più abbondante dell’Uranio è 238U che NON è fissile La fissione nucleare, nell’Uranio nella sua composizione isotopica naturale non avviene spontaneamente perché si tratta di una reazione SPORADICA, ed i neutroni che vengono liberati sono dispersi e NON vanno a colpire altri nuclidi fissili E dunque necessario arricchire l’Uranio rispetto alla sua composizione isotopica naturale, ovvero mettere a punto un procedimento per ottenere quantità di 235 U separato dagli altri isotopi

44 Reazioni a catena Tuttavia anche piccole quantitò 235U NON provocano la reazione a catena, perché i neutroni sono dispersi verso l’esterno E dunque necessario avere una massa minima, definita MASSA CRITICA, affinché il numero di neutroni generati dalla fissione che incontra un altro nuclide fissile sia maggiore del numero di neutroni che viene dispersi verso l‘esterno LA velocità della reazione a catena puo’ essere controllata se si inseriscono, all’interno del materiale fissile, della barre di grafite, sostanza capace di assorbire neutroni e quindi capace di rallentare ed, al limite, interrompere, il processo della reazione a catena

45 Reazioni a catena

46 Abbiamo parlato di.. Energie nucleari Difetto di massa
Fusione e fissione Nuclidi stabili e decadimento Tempo di dimezzamento Serie radioattive Fissione nucleare indotta Uranio arricchito/impoverito Reazioni a catena Reattore nucleare Bomba all’idrogeno


Scaricare ppt "Composti Sono costituiti da atomi di specie diverse."

Presentazioni simili


Annunci Google