La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

LEZIONE A.6 Le distribuzioni cumulate TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale Giuseppe A. Micheli.

Presentazioni simili


Presentazione sul tema: "LEZIONE A.6 Le distribuzioni cumulate TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale Giuseppe A. Micheli."— Transcript della presentazione:

1 LEZIONE A.6 Le distribuzioni cumulate TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale Giuseppe A. Micheli

2 In questa lezione.. In questa lezione impareremo a costruire e a interpretare una fun- zione derivata dalla funzione di frequenza f(x).  Dapprima definiremo e costruiremo funzioni cumulate di frequenza (dette anche funzioni di ripartizione),  Di seguito estenderemo definizioni e procedure di co- struzione alla funzione speculare, detta funzione retro- cumulata. Funzioni cumulate e retrocumulate ci consentiranno, nella prossima lezione, di introdurre l’ultimo pacchetto di ‘misure centrali’ di una variabile statistica.

3 Dalla frequenza alla frequenza cumulata xixi x1x1 x2x2 x3x3 x4x4 x5x5 nini n1n1 n2n2 n3n3 n4n4 n5n5 N N i = k=1..i n k N 1 =n 1 N 2 =n 1 +n 2 N 3 =n 1 +n 2 +n 3 N 4 =n 1 +n 2 +n 3 +n 4 T=N 5 =n 1 +n 2 +n 3 +n 4 +n 5 fifi f1f1 f2f2 f3f3 f4f4 f5f5 1 F i = k=1..i f k F 1 =f 1 F 2 =f 1 +f 2 F 3 =f 1 +f 2 +f 3 F 4 =f 1 +f 2 +f 3 +f 4 1=F 5 =f 1 +f 2 +f 3 +f 4 +f 5 inferiori o al più uguali Si dice frequenza cumulata associata alla modalità x i la frequenza di osservare modalità di X inferiori o al più uguali ad x i :

4 Una tipologia di scale di misurazione L’operazione di cumulazione implica il concetto di ordinamento gerar- chico delle modalità, quindi ha senso per le v.s. quantitative e per le v.s. qualitative (o mutabili) che siano ordinali. Per brevità faremo solo esempi di variabili quantitative, discrete e per intervalli. Soprattutto per la rappresentazione grafica che introdurremo, è buon senso applicarla solo a variabili quantitative. Scala/proprietàClassificazioneOrdinamentoMisurazione NominaleSI’NONO OrdinaleSI’SI’NO Quantit.discretaSI’SI’SI’ Quantit.per classiSI’SI’SI’

5 Rappresentare le frequenze cumulate Azionisti per azioni xixi nini NiNi Riprendiamo l’esempio di 46 azionisti, distribuiti secondo la dimensione del loro pacchetto azionario. Per rappresentare graficamente la cu- mulata di una variabile discreta seguia- mo queste regole di costruzione: xixixixi NiNiNiNi La funzione esiste da -, ma fino al pri- mo valore osservato ha valore 0: F(X<10)=0 Quindi la curva viaggia terra terra come un bruco fino alle soglie di x=10. Solo a quel punto la curva si impenna e sale a frequenza 35. Infatti F(X10)=f(10)=35. Questo è il bruco che striscia e si arrampica..

6 Variabili discrete, diagrammi a scalini Azionisti per azioni xixi nini NiNi xixixixi NiNiNiNi Continuiamo a seguire il nostro bruco, che striscia lungo la funzione cumulata. Tra X=10 e X=50 di nuovo la curva pro- seuguea lungo una retta parallela alla ascissa: nessuna modalità è infatti os- servata dopo X=10 e prima di X=50. Di nuovo a X=50 esatto (punto di di- scontinuità della funzione) la curva si impenna in verticale e raggiunge F(X50)= f(10)+f(50)= 44. (10,35) (50,44) (100,46) E così via… E così via… Risultato di questo per- corso è una funzione spezzata con la caratteristica forma di una scala. Per costruire il grafico è sufficiente individuare i tre punti incorniciati, a partire dalle loro coordinate (x i, N i ), e poi congiungere i diversi tratti della spezzata.

7 Ancora sui diagrammi a scalini Nel diagramma ad aste: La lunghezza delle barre è proporziona- le a n i oppure a f i. La v.s. discreta assume solo valori di- screti: non esiste per es. f(x) per X=40 La distribuzione di frequenza assume va- lori solo entro il campo di variazione di X Diagramma a ‘scalini’ xixixixi NiNiNiNi Diagramma ad ‘aste’ Nel diagramma a scalini: f i =F i -F i-1 La lunghezza delle tratte verticali è pro- porzionale ancora a n i o a f i, dato che è pari alla differenza tra due cumulate successive: f i =F i -F i-1 La funzione assume valore anche per modalità non osservate. Es. F(40)=F(10) La funzione cumulata assume valore an- che al di fuori del campo di variazione della v.s.: F(-)=0 e F()=1. (10,35) (100,46) (50,44) Confrontiamo allora il diagramma (ad aste) delle frequenze con quello (a scalini) delle cumulate:

8 Una definizione e un esempio funzione di ripar- tizione continua con m punti di di- scontinuità La distribuzione cumu- lativa di frequenze (funzione di ripar- tizione) di una v.s. di- screta è una funzione continua compresa tra 0 e + (tra – e + se il carattere può assumere valori <0), con m punti di di- scontinuità. xixi nini fifi FiFi 0200, ,150, ,350, ,250, ,100, , non più di o meno F 2 =F(X2)=0,60 cioè: “Il 60% degli studenti ha dato non più di due esami” o anche “ha dato due esami o meno” al massimo inferiore a 2 F 1 =F(X1)=0,25 cioè: “un quarto degli studenti ha dato al massimo 1 esame” o anche “ha dato un numero di esami inferiore a 2” La differenza tra le due cumulate è pari alla frequenza dell’ultima modalità sommata: F 2 -F 1 = F(X2)- F(X1) = f(X2) = f 2 Studenti del II anno secondo il numero di esami già sostenuti (2,0.60) (1,0.25) 0.35

9 Se una variabile è per classi x i -x i+1 nini fifi FiFi , , , Province per num. abitanti/kmq Leggiamo la tabella a fianco: il 74% delle province italiane ha una densità inferiore ai 1000 abitanti per kmq. Ma entro quel 74% una parte (quanti?) ha densità molto minore, per es. compresa tra 0 e 550 Ab/kmq. Posso calcolarla? hihi f i = 0,40 Costruendo l’istogramma avevamo sottin- teso un’ipotesi importante: entro un inter- vallo il carattere si presume distribuirsi u- niformemente (distribuzione rettangolare) Quindi se tra x=400 e x=1000 stanno 40 province, noi ipotizziamo che tra x=400 e x=700 (cioè metà dell’intervallo) stiano 20 province, e tra x=400 e x=550 (cioè un quarto della classe) stiano 10 province e così via, segmentando all’infinito…

10 Partendo dall’ipotesi di distribuzione uniforme x i -x i+1 nini fifi FiFi , , , Province per num. abitanti/kmq Se entro ciascuna classe le osservazioni si distribuiscono in modo uniforme al crescere continuo di X (cioè a intervalli  i piccoli quanto si vuole di X corrisponde una fre- quenza f i =h i · i sempre uguale) allora la cu- mulazione di incrementi infinitesimi co- stanti di frequenza produce una funzione cumulata rettilinea. FiFi Area: f i =  i h i hihi ii ii f i = F i -F i-1 ii

11 Variabili per classi e spezzata delle cumulate x i -x i+1 nini fifi FiFi , , , Province per num. abitanti/kmq Per costruire il grafico della cumulata di fre- quenza di una v.s. per classi occorre quindi  Segnare i punti di coordinate ( x i, F i ) (il punto corrispondente all’estremo su- periore di una classe coincide con il punto corrispondente all’estremo supe- riore della classe successiva)  Congiungere i punti successivi della spezzata, prolungando a volontà a . La funzione di ripartizione di una v. per classi è una spezzata che congiunge i punti di coor- dinate (x i+1,F i ) partendo dal punto (x 1,F 0 =0). L'ipotesi di distribuzione uniforme diventa ipotesi di crescita uniforme. La densità di frequenza corrisponde al coefficiente ango- lare (tang) della spezzata in ogni segmento. FiFi xixi

12 Un primo esempio x i |-x i+1 fifi hihi FiFi 15 |-25 0,1571,570, |-35 0,4974,970, |-45 0,2732,730, |-65 0,0730,371,000 Struttura per età Immigrati Esempi di lettura dei dati e del grafico:  Il 65,4% degli immigrati ha meno di 35 anni.  I ‘giovani’ immigrati (che non rag- giungono i 25 anni) sono il 15,7%. FiFi 10 x h i xixi xixi

13 Un secondo esempio x i |- x i+1 0 | | | | | | |-300 fifi 11,5 39,9 31,5 11,2 3,4 2,0 0,5 100 FiFi 11,5 51,4 82,9 94,1 97,5 99,5 1,00 xixi FiFi Famiglie lombarde per reddito annuo hihi Leggere dati e grafici:  L’11,5% delle famiglie lombarde ha un reddito inferiore ai 20 milioni (di lire) annue.  Il 99,5% ha entrate in- feriori ai 100 milioni. NB: la classe a max densità di frequenza (20-40) nell’i- stogramma è quella a max pendenza della spezzata

14 Un terzo esempio [x i ; x i+1 )nini ii hihi NiNi 0|— , |— |— , |— |— ,5250 Indagine sui tempi casa-lavoro (N=250) Attenzione: Il 10% degli intervistati (25 su 250) im- piega meno di un quarto d’ora. Ma il 12% (30 su 250) impiega più di 2 ore. Questa frase corrisponde a una funzione ‘cumulata a rovescio’. Approfondiamo questo aspetto.

15 Retrocumulare [x i ; x i+1 )nini NiNi FiFi N Ri F Ri 0|— ,102501,00 15|— ,222250,90 30|— ,521950,78 60|— ,881200,48 120|— ,00300, più di non meno Il 10% (30 su 250) impiega più di due ore. Ma anche: quasi la metà (il 48%) impiega non meno di un’ora. I dati sono gli stessi, ma cumulati a rovescio aprono a giudizi differenti:  Quasi ¼ (22%) impiega meno di ½ ora  Ma quasi la metà impiega più di 1 ora siperiori o almeno uguali Si dice frequenza retrocumulata as- sociata alla modalità x i la fre- quenza di osservare modalità di X siperiori o almeno uguali a x i NB: F r(i+1) =1- F i cumulata retrocumulata

16 Un secondo esempio (un classico) Di 100 bambini nati a Londra nel 1662: 64 sopravvivevano a 6 anni 40 sopravvivevano a 16 anni 25 sopravvivevano a 26 anni 16 sopravvivevano a 36 anni 10 sopravvivevano a 46 anni 6 sopravvivevano a 56 anni 3 sopravvivevano a 66 anni 1 sopravviverà a 76 anni Graunt per primo nel 1662 stima una ‘ta- vola di mortalità’ della città di Londra. almeno Essa consiste in una funzione retrocumu- lata. Da essa si può risalire alla distri- buzione di frequenza dell’età di morte (se 100 nascono e 64 vivono almeno 6 anni, =36 sono i decessi tra 0 e 6). Dalla distribuzione di frequenza si può ovviamente costruire la curva cumulata. x i -x i+1 N Ri Da 0 a 6100 Da 6 a 1664 Da 16 a 2640 Da 26 a 3625 Da 36 a 4616 Da 46 a 5610 Da 56 a 666 Da 66 a 763 Da 76 a 861 nini NiNi prima di maggiore o pari Di 100 nati, ben 36 muoiono prima di 6 anni. In altre parole: di 100 nati solo 64 hanno età di morte maggiore o pari a 6

17 Curve (retrocumulate) di “eliminazione” x i -x i+1 N Ri Da 0 a 664 Da 6 a 1640 Da 16 a 2625 Da 26 a 3616 Da 36 a 4610 Da 46 a 566 Da 56 a 663 Da 66 a 761 Da 76 a 860 N Ri (85) 98,5 98,2 97,4 96,4 88,3 75,0 46,6 15,3 1,0 In rosso a tratto continuo la curva retro- cumulata di sopravvivenza (o di ‘elimina- zione’) della città di Londra nel In blu tratteggiata la stessa curva per la po- polazione italiana maschile nel Un confronto eloquente.. Questi sono tutti anni ‘guadagnati’!

18 Un terzo esempio: industrial demography La funzione retrocumulata non è esclusiva di demografia e epidemiologia. Interessa anche la ricerca operativa (curve di affidabilità di uno stock di pneumatici), l’economia del lavoro (funzione di anzianità di forza lavoro prima della pensione), l’economia industriale (cicli di vita delle imprese). x i -x i+1 FiFi 0-115, , , , , , , , , ,6 Es.:‘mortalità’ di imprese nate nel nini F Ri 15, ,384,6 10,971,3 7,860,4 6,252,6 4,446,4 4,142,0 3,137,9 2,034,8 2,432,8 69,630,4 (Fonte: Biggiero, Caroli, 1995) Domanda: la curva non va a zero ma tende a un asintoto intorno a 25. Che vuol dire? Altra domanda: tracciate l’istogramma della densità di frequenza di X. Che significato ha?

19 Ultimo esempio: slittamento dei passaggi In Friuli, nella coorte di donne nate nel 1946, le % di quelle che non avevano ancora un figlio rispettivamente a 20, 25, 30 e 35 anni era- no del 93%, 49%, 14% e 9%. Questa espressione equivale a leggere una funzione retrocumulata (in rosso). Il confronto con la retrocumu- lata della coorte del 1960 (in blu) è davvero significativo. x i |-x i+1 F Ri (46) , , , ,14 35 e +0,09 x i |-x i+1 F Ri (60) , , , ,34 35 e +0,21 La % di donne che non hanno esperito la mater- nità cresce (quasi) a ogni età. La % di ‘childles- sness’ (non maternità definitiva) si alza. Se prendiamo le don- ne che stanno al cen- tro della distribuzione ordinata secondo l’età di maternità (50% della cumulata), la lo- ro età si sposta da 25 a 27 anni.


Scaricare ppt "LEZIONE A.6 Le distribuzioni cumulate TQuArs – a.a. 2010/11 Tecniche quantitative per l’analisi nella ricerca sociale Giuseppe A. Micheli."

Presentazioni simili


Annunci Google