La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Rappresentazione dei dati statistici I.P.S.S.C.T.P. S.Pertini CROTONE Autore: prof. Enrico Paniconi

Presentazioni simili


Presentazione sul tema: "Rappresentazione dei dati statistici I.P.S.S.C.T.P. S.Pertini CROTONE Autore: prof. Enrico Paniconi"— Transcript della presentazione:

1 Rappresentazione dei dati statistici I.P.S.S.C.T.P. S.Pertini CROTONE Autore: prof. Enrico Paniconi

2 FREQUENZE ASSOLUTE La FREQUENZA ASSOLUTA indica quante volte la MODALITÀ di un CARATTERE si ripete Colore capelli (carattere) N° persone (frequenza assoluta) Neri 10 Castani 6 Rossi 1 biondi 5 totale 22 Frequenze assolute carattere modalità

3 FREQUENZE RELATIVE La frequenza relativa di una certa modalità è data dal rapporto tra la frequenza assoluta di tale modalità ed il numero totale dei casi moltiplicato per 100: Le FREQUENZE ASSOLUTE, di due distribuzioni di dati, anche della stessa specie, non sono confrontabili in quanto si riferiscono, in generale, ad un diverso numero di casi complessivi. Questo inconveniente viene superato introducendo il concetto di FREQUENZA RELATIVA OSSERVAZIONE: Le frequenze relative non sono altro che RAPPORTI PERCENTUALI

4 CALCOLO DELLE FREQUENZE RELATIVE Consideriamo i dati presenti nella seguente tabella Colore capelli (carattere) frequenze assolute neri10 castani6 rossi1 biondi5 TOTALE 22 Colore capelli frequenze assolute frequenze relative % neri1045,46 castani627,27 rossi14,55 biondi522,72 TOTALE Calcolo FREQUENZE RELATIVE

5 MEDIA ARITMETICA SEMPLICE Consideriamo una distribuzione di DATI DIVERSI UNO DALLALTRO : La MEDIA ARITMETICA SEMPLICE è uguale alla somma dei dati divisa per n, cioè:

6 COMPITOVOTO N° 1 7 N° 2 8 N° 3 6 TOTALE 21 Un alunno nei tre compiti di matematica ha riportato i voti presenti in tabella. Calcolare la MEDIA ARITMETICA dei voti. Dove: 21 = somma dei voti 3 = numero dei voti 7 = MEDIA ARITMETICA dei voti MEDIA ARITMETICA SEMPLICE Esempio di calcolo

7 I grafici statistici possono assumere varie forme a seconda del tipo di fenomeno che si studia. Tra i più diffusi ricordiamo: Ortogramma Aerogramma Istogramma Ideogramma

8 Lortogramma è costituito da rettangoli di uguale base e di altezza proporzionale alla frequenza di ciascun dato

9 Laerogramma si ottiene dividendo un cerchio in settori circolari aventi un angolo al centro proporzionale alle frequenze che rappresentano

10 Listogramma consiste in un insieme di rettangoli adiacenti aventi aree proporzionali alla frequenza del dato statistico

11 Lideogramma è un tipo di rappresentazione grafica che consiste nel rappresentare gli oggetti in esame mediante immagini stilizzate. Esempio Esempio

12 Se vogliamo rappresentare la densità di popolazione (numero di abitanti per km 2 ) di alcune nazioni europee,possiamo servirci del seguente ideogramma. Un disco colorato rappresenta trenta abitanti.

13 Media aritmetica La media aritmetica di n numeri si calcola sommando gli n numeri e dividendo il risultato per n; è un valore di sintesi che riassume un insieme di dati; ha un preciso ambito di significatività; è una media ponderata cioè i numeri dellinsieme da sintetizzare pesano in misura frequenza con cui ricorrono. proporzionale alla

14 Altri valori di sintesi Moda o valore normale è il numero che è presente con maggior frequenza nellinsieme Mediana corrisponde al valore centrale della sequenza ottenuta disponendo in ordine crescente i numeri dellinsieme

15 Media aritmetica Se i voti riportati in una materia scolastica sono 3, 6, 4, 7, la loro media è: ( )/4 = 20/4 = 5 cioè media aritmetica = somma di tutti i dati numero dei dati Media aritmetica pesata = (somma dei dati per le loro frequenze) / (somma delle frequenze)

16 Si chiama moda di una distribuzione di frequenze il dato avente la massima frequenza. Esempio Esempio

17 Considerata la seguente tabella che mostra la distribuzione, secondo le età, dei 60 studenti che seguono un certo corso di studi, si ha che la moda è 21. Infatti questo è il termine (età) cui corrisponde la massima frequenza.

18 Si chiama mediana il dato di mezzo quando i dati stessi sono disposti in ordine. Ad esempio, per linsieme dei dati numerici( già disposti in ordine crescente) 2, 5, 6, 9, 10 la mediana è 6

19 Parliamo di media, moda e mediana Consideriamo le più comuni misure utilizzate per interpretare i dati di un'indagine statistica Media aritmetica Ai 23 alunni di una classe è stato chiesto di indicare il tempo impiegato a raggiungere la scuola. le risposte sono riportate nella tabella seguente Alunno Tempo (min) A 20 B 12 C 3 D 7 E 5 F 6 G 15 H 5 I 10 L 4 M 7 N 5 O 6 P 9 Q 5 R 6 S 7 T 10 U 7 V 10 Z 5 X 18 Y 2 tot. 184 media 184:23=8 Il valore ottenuto è la media aritmetica dei tempi impiegati ed è dato dalla somma di tutti i tempi diviso il numero degli alunni.La media aritmetica di una serie di dati si ottiene sommando tutti i dati e dividendo il risultato per il numero di dati

20 Ordiniamo i dati già considerati come nella tabella seguente: Tempo (min) Frequenza (moda) La moda è il valore 5 poichè è quello che si presenta il maggior numero di volte.

21 Mediana Disponiamo ora in ordine crescente i 23 valori che indicano i tempi di percorrenza: il valore che occupa il posto centrale, ovvero il dodicesimo posto è il 7. Tale valore rappresenta la mediana. nel caso in cui i valori siano in numero pari, si prendono i due valori centrali e se ne calcola la media aritmetica In definitiva abbiamo trovato tre valori significativi: 8 media aritmetica: ci dice quanto tempo impiegherebbe ciascun alunno se tutti impiegassero lo stesso tempo; 5 moda: ci dice qual è il tempo impiegato dal maggior numero di alunni; 7 mediana: ci dice che circa la metà degli alunni impiega meno di 7 minuti e circa la metà impiega più di 7 minuti. Pubblicato daClaudio Cennamoa08:00Claudio Cennamo08:00

22 I dati e le previsioni ovvero la Matematica dellincertezza

23 Probabilità? Lincertezza è condizione normale quando occorre prendere decisioni siamo guidati quasi sempre da valutazioni di tipo probabilistico è un tentativo di matematizzare i processi inconsapevoli o intuitivi con cui attribuiamo una determinata probabilità ad un evento nasce su sollecitazione di giocatori dazzardo nel 1600 Se moltiplichiamo x 100, la probabilità è espressa come rapporto percentuale

24 Probabilità che lanciando un dado venga il numero 2 …estraendo una carta da un mazzo di 40 carte questa sia un re se abbiamo lanciato 10 volte una moneta ottenendo testa, allundicesimo lancio è più conveniente puntare su croce? E più facile indovinare lordine di arrivo in una gara a cui partecipano 4 atleti o indovinare la seconda lettera della trecentoquarantesima parola del terzo capitolo di un libro di lettura?


Scaricare ppt "Rappresentazione dei dati statistici I.P.S.S.C.T.P. S.Pertini CROTONE Autore: prof. Enrico Paniconi"

Presentazioni simili


Annunci Google