La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Roberto Capone Il caos deterministico Il cavolo romano (er broccolo romanesco)

Presentazioni simili


Presentazione sul tema: "Roberto Capone Il caos deterministico Il cavolo romano (er broccolo romanesco)"— Transcript della presentazione:

1 Roberto Capone Il caos deterministico Il cavolo romano (er broccolo romanesco)

2 I Sistemi caotici come modelli creativi Vedere un mondo in un grano di sabbia e un universo in un fiore di campo, possedere linfinito sul palmo della mano e leternità in unora (W. Blake) … questo grandissimo libro della natura che continuamente ci sta aperto innanzi agli occhi (io dico luniverso) non si può intendere se prima non si impara a intender la lingua e conoscere i caratteri ne quali è scritto. Egli è scritto in lingua matematica e i caratteri son triangoli, cerchi ed altre figure geometriche, senza i quali mezzi è impossibile a intendere umanamente parola: questi è un aggirarsi vanamente per un oscuro laberinto (G. Galilei) " Il più bello dei mondi è un mucchio di rifiuti gettato dal caso" (Teofrasto, metafisico,III sec a.c.)

3 Introduzione Il mondo si può guardare con gli occhi di un poeta, contornandolo di una velata malinconia o di una stravaganza frenetica; si può, con limmaginazione, varcare i confini del reale, perdersi nella molteplicità dei mille colori di un bosco, credere che un bacio sia un miracolo divino… Quando uno scienziato si guarda intorno, invece,, cammina sotto la pioggia e pensa allangolo che essa forma con lorizzontale, pensa alle parole come alla propagazione nel vuoto del suono, al sesso come a un processo iterativo di input e output… Oggi, con la sensibilità del poeta, il matematico si perde nella complessità dei mille colori della storia assaporando il gusto di nuove conoscenze, percorrendo sentieri inesplorati e si abbandona a inusitate follie.(R.Capone)

4 Pierre-Simon de Laplace disse: …Unintelligenza che, per un istante dato, conoscesse tutte le forze da cui la natura è animata … abbraccerebbe nella stessa formula i moti dei corpi più grandi delluniverso e quelli dellatomo più leggero: per essa non ci sarebbe nulla dincerto e il futuro come il passato sarebbe presente ai suoi occhi… (1825)

5 Attraverso i secoli Eraclito (VI sec. a.C.) Democrito e Leucippo Anassimandro Epicuro In tutto cè parte di tutto Dallantica Grecia Lucrezio Newton Leibnitz Data aequatione quotcunque fluentes quantitae involvente fluxiones invenire et vice versa

6 Ai giorni nostri Laplace (XVIII secolo) Brown ( ) Einstein ( ) Heisenberg (1927) Gauss (1777 – 1855) Poincarè (1854 – 1912)

7 Il Moto Browniano Già Robert Brown (botanico scozzese) nel lontano 1827, servendosi di un comune microscopio analizzando il comportamento dei granelli di polline immersi in acqua, scoprì che essi si muovono in modo costante, casuale e turbolento, senza relazione con correnti presenti nellacqua Stato molecola attiva

8

9 1827Gay-Lussac I gas reagiscono luno contro laltro secondo proporzioni definite per volume A. Avogadro a TPS tutti i gas contengono uno stesso numero di particelle in un dato volume 1858 S. Cannizzaro riconobbe valida lipotesi di Avogadro 1865J. Lodschmidt stimò il diametro delle molecole di gas e riuscì a calcolare il numero di molecole in un dato volume di gas a TPS

10 Seconda metà dell800 Maxwell e Boltzmann I gas sono composti da molecole in collisione. Purtroppo il loro moto non è governato dalle leggi della meccanica newtoniana ma se ne puo solo determinare il comportamento medio

11 Ogni corpo è costituito da molecole; esse non sono ferme ma oscillano continuamente La velocità media delle molecole dipende dalla temperatura Nei solidi e nei liquidi le molecole sono più legate tra loro, oscillano minor ampiezza e non si spostano sensibilmente Nei gas le molecole sono più libere e possono anche diffondere

12 Einstein e il moto browniano Albert EinsteinAlbert Einstein ( Über die von der molekularkinetishchen Theorie der Warme gefordete Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen1905 Einstein puntava, non già come Gibbs ad ottenere una teoria rigorosa che non richiedesse assunzioni sulle molecole, ma trovare prove sulla loro stessa esistenza. Di qui la prima esigenza: dimostrare che moti di tipo browniano esistevano, in natura, come conseguenze della teoria cinetica e che essi si offrivano come referenti per misurazioni di laboratorio capaci di offrire informazioni fondamentali sulla dimensione degli atomi.

13 Il polline - afferma Einstein - si muove perché incessantemente colpito, in modo casuale ed imprevedibile, dalle molecole d'acqua che lo circondano e che sono in continuo movimento per agitazione termica Einstein dimostrò che la distanza media percorsa dalla particella aumentava in ragione della radice quadrata del tempo trascorso, in modo, trascorso un tempo sufficiente, da ritrovarla in un punto molto distante da quello originario

14 Ma perché Einstein disse "radice quadrata"? Essa rappresenta una caratteristica del tutto peculiare e originale della previsione di Einstein. Infatti essa prevede che in quattro secondi la particella non si sposterà quattro volte più distante di quanto si sposti in un secondo, ma solo due. In particolare, Einstein previde che a temperatura ambiente una particella si sposti a distanza pari ad un decimillesimo di centimetro al secondo

15 Interpreta il fenomeno in termini di urti con le molecole del liquido, dando una svolta decisiva ai futuri sviluppi della teoria del rumore e delle fluttuazioni, ma sopratutto alle nascenti teorie atomiche. Facevano acqua da tutte le parti i modelli di: Thomson (modello a panettone) Rutherford (modello planetario) In questo fervido contesto culturale si individuano anche le figure di due matematici italiani: Gregorio Ricci Curbastro ( ) e Tullio Levi-Civita ( )

16 Interactive physic M=50 N=100 E=465J N=400 E=1630J N=1600 E=6720J M=100N=100 E=449JN=400 E=1655J N=1600 E=6496J

17 Dimostrazione matematica una particella di massa M immersa in un fluido, all'equilibrio termodinamico, ad una temperatura T.massa Questa particella sarà soggetta ad un attrito viscoso, dove λ è il coefficiente di attrito viscoso e è la velocità della particella stessa, e dalla forza risultante dagli urti con le molecole che compongono il fluido. Riguardo a questa forza aleatoria possiamo fare le seguenti ipotesi:attritovelocitàforza

18 Dimostrazione matematica 2

19 Dimostrazione matematica 3

20 Macroscopicamente una particella soggetta ad un moto browniano subisce, in un tempo infinitesimo δt, uno spostamento distribuito come una gaussiana con media nulla e varianza 2Dt. Un metodo per studiare questo moto è quello di studiare come evolve la densità di probabilità di trovare la particella nella posizione ad un tempo t + δt.tempogaussiana medianullavarianza densità di probabilità Questa può essere riscritta come la probabilità che la particella si trovasse in r ad un tempo t, moltiplicata per la probabilità condizionata che, nell'intervallo di tempo δt, la particella si sia spostata da r a r+dr integrata su tutti gli r :probabilità condizionata dove la probabilità condizionata, per quanto visto sopra, può essere scritta come:

21 Ho sfruttato lo sviluppo in serie di Taylor perché per dt piccoli anche dr saranno piccoli ottenendo la ben nota equazione di diffusione

22 Si racconta che Heisenberg, uno dei padri della Fisica quantistica e premio Nobel per la Fisica nel 1932, pochi minuti prima di morire abbia detto: …quando nell'aldilà avrò l'opportunità di interrogare il Creatore, gli voglio chiedere due cose: perché la relatività e perché la turbolenza. Almeno sulla prima spero di ottenere una risposta…".

23 Non è possibile sapere dove si trova una particella e seguirla nella sua traiettoria (non esiste più alcuna traiettoria); né si può sperare di trovarla in un determinato punto (la probabilità è zero). Ci si deve accontentare della probabilità di avere la particella in un certo volume dello spazio. Wolfgang Ernst Pauli (1900 – 1958) Niels Henrik David Bohr (1885 – 1962)

24 Le conseguenze del principio di indeterminazione di Heisenberg sono devastanti. Si può finalmente dire addio alle insoddisfacenti orbite planetarie di Rutherford, perché il concetto stesso di orbita non ha più senso. Infatti, ciò che rende unica una traiettoria, che si trova risolvendo le equazioni di Newton, è la conoscenza simultanea di posizione e velocità iniziali di una particella. Ma è proprio ciò che in meccanica quantistica non si può avere!equazioni di Newton

25 È Born ad accorgersi che l'algebra soggiacente al modello di Heisenberg non è commutativa: ab non è uguale a ba. Ciò vuol dire che a e b non possono essere numeri, ma devono essere quelle tabelle di numeri che i matematici chiamano matrici. I fisici non sono abituati a questo formalismo, ma non possono negare il successo della quantenmechanik.

26 …ogni individuo, anche il più chiuso nella vita più banale, costituisce in sé stesso un cosmo. Porta in sé le sue molteplicità interiori, le sue personalità virtuali, uninfinità di personaggi chimerici, una molteplice esistenza nel reale e nellimmaginario, nel sonno e nella veglia, nellobbedienza e nella trasgressione, nellostentato e nel segreto; porta in sé brulichii larvali nelle proprie caverne e nei propri abissi insondabili. Ognuno contiene in se galassie di sogni e di fantasmi, slanci inappagati di desideri e amori, abissi di infelicità, immensità di glaciale indifferenza, conflagrazioni di astri in fiamme, irruzioni di odio, smarrimenti stupidi, lampi di lucidità e dementi burrasche … E. Morin

27


Scaricare ppt "Roberto Capone Il caos deterministico Il cavolo romano (er broccolo romanesco)"

Presentazioni simili


Annunci Google