La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

1 Codifica e Rappresentazione dellinformazione Cosa vedremo : Rappresentazione binaria Codifica dei numeri Codifica dei caratteri Codifica delle immagini.

Presentazioni simili


Presentazione sul tema: "1 Codifica e Rappresentazione dellinformazione Cosa vedremo : Rappresentazione binaria Codifica dei numeri Codifica dei caratteri Codifica delle immagini."— Transcript della presentazione:

1 1 Codifica e Rappresentazione dellinformazione Cosa vedremo : Rappresentazione binaria Codifica dei numeri Codifica dei caratteri Codifica delle immagini Compressione dei dati Codifica dei suoni

2 2 Come vengono rappresentati dati e programmi ?.. Larchitettura di Von Neumann Memoria (RAM,dischi, etc) Mantiene Dati e Programmi Processore (CPU) E un esecutore capace di interpretare i singoli passi richiesti dai programmi (istruzioni elementari) Sottosistema di Interfaccia Permette di comunicare dati e programmi alla macchina e di ottenere i risultati (tastiera, micr., stampante, schermo, )

3 3 Rappresentazione binaria Tutta linformazione interna ad un computer è codificata con sequenze di due soli simboli : 0 e 1 –è facile realizzare dispositivi elettronici che discriminano fra due stati, molto meno se gli stati sono tanti Lunità elementare di informazione si chiama bit dabinary digit

4 4 Rappresentazione binaria (2) Vedremo prima come rappresentare i numeri sequenze di 0 e 1 Poi discuteremo la rappresentazione di insiemi di oggetti finiti (caratteri, giorni della settimana, operazioni elementari etc…) Infine discuteremo la rappresentazione di insiemi infiniti (es. i naturali), e continui (i reali, immagini, suoni)

5 5 Notazione posizionale in base 10 Un numero (es. 5) può essere rappresentato in molti modi : –cinque, five, 5, V, Rappresentazioni diverse hanno proprietà diverse –moltiplicare due numeri in notazione romana è molto più difficile che moltiplicare due numeri in notazione decimale …. Noi siamo abituati a lavorare con numeri rappresentati in notazione posizionale in base 10

6 6 Notazione posizionale in base 10 (2) La rappresentazione di un numero intero in base 10 è una sequenza di cifre scelte fra : –es: 23, 118, 4 Il valore di una rappresentazione c N …c 0 è dato da c N * 10 N + c N-1 * 10 N-1 ….+ c 1 * c 0 * 10 0 esempi : –23 = 2* * 10 0 = –118 = 1* * * 10 0 =

7 7 Notazione posizionale in base 10 (3) Vediamo alcune proprietà di questa notazione : Il massimo numero rappresentabile con N cifre è 99….9 (N volte 9, la cifra che vale di più), pari a 10 N -1 –es: su tre cifre il massimo numero rappresentabile è 999 pari a =1000-1

8 8 Notazione posizionale in base 10 (4) Vediamo alcune proprietà di questa notazione (cont.): Quindi se voglio rappresentare K diverse configurazioni (cioè …K-1) mi servono almeno almeno x cifre dove 10 x è la più piccola potenza di 10 che supera K –es : se voglio 25 configurazioni diverse mi servono almeno 2 cifre perché 10 2 =100 è la più piccola potenza di 10 maggiore di 25

9 9 Notazione posizionale in base 2 La rappresentazione di un numero intero in base 2 è una sequenza di cifre scelte fra 0 1 : –es: 10, 110, 1 Il valore di una rappresentazione c N …c 0 è dato da c N * 2 N + c N-1 * 2 N-1 ….+ c 1 * c 0 * 2 0 esempi : –10 = 1* *2 0 = 2 –110 = 1* * * 2 0 = = 6 –1 = 1 *2 0 = 1

10 10 Notazione posizionale in base 2 (2) Per la base due valgono proprietà analoghe a quelle viste per la base 10 : Il massimo numero rappresentabile con N cifre è 11….1 (N volte 1, la cifra che vale di più), pari a 2 N -1 –es: su tre cifre il massimo numero rappresentabile è 111 pari a = = 7

11 11 Notazione posizionale in base 2 (3) Per la base due valgono proprietà analoghe a quelle viste per la base 10 (cont.): Quindi se voglio rappresentare K diverse configurazioni (cioè …K-1) mi servono almeno almeno x cifre dove 2 x è la più piccola potenza di 2 che supera K –es : se voglio 25 configurazioni diverse mi servono almeno 5 cifre perché 2 5 =32 è la più piccola potenza di 2 maggiore di 25

12 12 Conversione da base 10 a base 2 Dato un numero X si cerca c N …c 0 sua rappresentazione in base 2 Conversione per divisione : –si divide ripetutamente X per 2 –il resto ottenuto nella divisione i-esima è la i-esima cifra (c i ) della rappresentazione binaria

13 13 Conversione da base 10 a base 2 (2) Come si converte X nella sua rappresentazione in base 2 c N …c 0 usando il metodo della divisione Es : convertiamo il numero 13 –13 / 2 da quoziente 6 e resto 1 (c 0 ) –6 / 2 da quoziente 3 e resto 0 (c 1 ) –3 / 2 da quoziente 1 e resto 1 (c 2 ) –1 / 2 da quoziente 0 e resto 1 (c 3 ) La rappresentazione di 13 è 1101

14 14 Le basi 8 e 16 (ottale ed esadecimale) Vengono spesso usate per dare una rappresentazione compatta della codifica binaria Ottale, cifre –8 = 2 3 –vale la seguente proprietà

15 15 Le basi 8 e 16 (ottale ed esadecimale) esadecimale cifre A B C D E F –16 = 2 4 –vale la seguente proprietà B F D 4 –usato per rappresentare indirizzi e contenuto delle celle di memoria (32 bit!!!)

16 16 La rappresentazione dei numeri allinterno di un computer Usa la notazione binaria Ogni numero viene rappresentato con un numero finito di cifre binarie (bit) Numeri di tipo diverso hanno rappresentazioni diverse –es. interi positivi, interi (pos. e neg.), razionali, reali, complessi

17 17 La rappresentazione dei numeri allinterno di un computer (2) Alcuni termini utili: –byte : una sequenza di 8 bit –word (parola) : 2 o 4 byte (dipende dalla macchina) unità minima che può essere fisicamente letta o scritta nella memoria –abbreviazioni kappa, mega, giga : K = 2 10, M = 2 20, G = 2 30 Tipicamente gli interi positivi si rappresentano usando 2 o 4 byte

18 18 La rappresentazione dei numeri allinterno di un computer (3) Alcuni punti importanti: –se uso 4 byte (32 bit) posso rappresentare solo i numeri positivi da 0 a , che sono molti ma non tutti ! –se moltiplico o sommo due numeri molto elevati posso ottenere un numero che non è rappresentabile es: vediamo cosa succede in base 10 con solo 3 cifre : = 1136 risultato 136 se uso solo 3 cifre non ho lo spazio fisico per scrivere la prima cifra (1) che viene persa, è un fenomeno chiamato overflow

19 19 La rappresentazione dei numeri allinterno di un computer (4) Interi positivi e negativi : –es. il tipo int in C usa di solito 4 byte –ci sono diverse convenzioni di rappresentazione es: modulo e segno in cui il primo bit viene riservato al segno (1 negativo, 0 positivo) e gli altri 31 al modulo quella usata in realtà è la rappresentazione in complemento a 2 (in cui non ci addentriamo…) –rimane il problema delloverflow

20 20 La rappresentazione dei numeri allinterno di un computer (5) Razionali –numero finito di cifre periodiche dopo la virgola (ad esempio 3.12 oppure –rappresentazione solitamente su 4/8 byte –rappresentazione in virgola fissa : riservo X bit per la parte frazionaria –es : con 3 bit per la parte intera e 2 per quella frazionaria , Parte intera Parte frazionaria

21 21 La rappresentazione dei numeri allinterno di un computer (6) Come si converte in base 10 una rappresentazione in virgola fissa –es : = 1* * * * * 2 -2 = = = 5.25 dove 2 -1 = 1/2 = 0.5, 2 -2 = 1/2 2 = 0.25 e in generale 2 -n = 1/2 n

22 22 La rappresentazione dei numeri allinterno di un computer (7) Problemi della rappresentazione in virgola fissa –overflow –undeflow quando si scende al di sotto del minimo numero rappresentabile es. vediamo in base 10, con 2 cifre riservate alla parte frazionaria 0.01 / 2 = non rappresentabile usando solo due cifre

23 23 La rappresentazione dei numeri allinterno di un computer (8) Problemi della rappresentazione in virgola fissa (cont.) –spreco di bit per memorizzare molti 0 quando lavoro con numeri molto piccoli o molto grandi es. vediamo in base 10, con 5 cifre per la parte intera e 2 cifre riservate alla parte frazionaria oppure –i bit vengono usati più efficientemente con la notazione esponenziale o floating point (virgola mobile)

24 24 La rappresentazione dei numeri allinterno di un computer (9) Rappresentazione in virgola mobile –idea : quando lavoro con numeri molto piccoli uso tutti i bit disponibili per rappresentare le cifre dopo la virgola e quando lavoro con numeri molto grandi le uso tutte per rappresentare le cifre in posizioni elevate –questo permette di rappresentare numeri piccoli con intervalli minori fra loro rispetto ai numeri grandi –questo riduce gli errori nel calcolo a parità di bit utilizzati

25 25 La rappresentazione dei numeri allinterno di un computer (10) Rappresentazione in virgola mobile (cont.) 0 Numeri rappresentabili in virgola fissa 0 Numeri rappresentabili in virgola mobile

26 26 La rappresentazione dei numeri allinterno di un computer (11) Rappresentazione in virgola mobile (cont.) –ogni numero N è rappresentato da una coppia (mantissa M, esponente E) con il seguente significato N = M * 2 E –esempi: 1. in base 10, con 3 cifre per la mantissa e 2 cifre per lesponente riesco a rappresentare = 3.49 * con la coppia (3.49,11) perché M = 3.49 ed E = 11

27 27 La rappresentazione dei numeri allinterno di un computer (12) Rappresentazione in virgola mobile (cont.) –esempi: 2. in base 10, con 3 cifre per la mantissa e 2 per lesponente riesco a rappresentare = 2.0 * con la coppia (2.0,-9) perché M = 2.0 ed E = -9 –sia che non sono rappresentabili in virgola fissa usando solo 5 cifre decimali !!!

28 28 Rappresentazione di un insieme finito di oggetti Vogliamo rappresentare i giorni della settimana : {Lu, Ma, Me, Gio, Ve, Sa, Do} usando sequenze 0 e 1 Questo significa costruire un codice, cioè una tabella di corrispondenza che ad ogni giorno associa una opportuna sequenza In principio possiamo scegliere in modo del tutto arbitrario….

29 29 Rappresentazione di un insieme finito di oggetti (2) Una possibile codifica binaria per i giorni della settimana

30 30 Rappresentazione di un insieme finito di oggetti (3) Problema : la tabellina di corrispondenza fra codifiche tutte di lunghezza diversa –spreco di memoria –devo capire come interpretare una sequenza di codifiche – = Me Gio Gio – = Gio Gio Do Gio Di solito si usa un numero di bit uguale per tutti : il minimo indispensabile

31 31 Rappresentazione di un insieme finito di oggetti (4) Per rappresentare 7 oggetti diversi servono almeno 3 bit (minima potenza di due che supera 7 è 8= 2 3 ) quindi : 000 Lunedì 110 Domenica 001 Martedì 111 non ammesso 010 Mercoledì 011 Giovedì 100 Venerdì 101 Sabato

32 32 Rappresentazione di caratteri e stringhe I caratteri sono un insieme finito di oggetti e seguono la strategia vista per i giorni della settimana Perché due diversi calcolatori si possano parlare correttamente è necessario che usino lo stesso codice

33 33 Rappresentazione di caratteri e stringhe (2) Codifiche di uso comune : –il codice ASCII (American Standard code For Information Interchange) su 7 o 8 bit –il codice UNICODE su 16 bit (più recente, permette di rappresentare anche alfabeti diversi e simboli per la scrittura di lingua orientali) Le stringhe sono generalmente sequenze di caratteri terminate in modo particolare

34 34 Rappresentazione di immagini Le immagini sono un continuo e non sino formate da sequenze di oggetti ben definiti come i numeri e le stringhe Bisogna quindi prima discretizzarle ovvero trasformarle in un insieme di parti distinte che possono essere codificate separatamente con sequenze di bit Consideriamo prima immagini fisse (foto etc …)

35 35 Rappresentazione di immagini (2) Immagini bitmap : 1. limmagina viene scomposta in una griglia di elementi detti pixel (da picture element) immagine codifica

36 36 Rappresentazione di immagini (3) Immagini bitmap : 2. Ogni pixel è rappresentato da uno o più bit Rappresentazione di un pixel

37 37 Rappresentazione di immagini (4) Rappresentazioni dei pixel : –la rappresentazione in toni di grigio : un byte per pixel, con 256 gradazioni di grigio per ogni punto (immagini bianco e nero), o più byte per pixel, per avere più gradazioni possibili –rappresentazione a colori RGB (red, green,blu) : comunemente 3 byte per pixel che definiscono lintensità di ciascun colore base. In questo modo ho circa 16 milioni di colori diversi definibili

38 38 Rappresentazione di immagini (5) Problema : –la rappresentazione accurata di una immagine dipende dal numero di pixel (definizione) dalla codifica del pixel –… e richiede generalmente molta memoria, ad esempio : tipo defin numero colori num. Byte imm. televisiva 720x KB SVGA 1024x MB foto 15000x milioni 430 MB

39 39 Rappresentazione di immagini (6) Quindi si cerca di risparmiare memoria : –con luso di una tavolozza (palette) che contiene il sottoinsieme dei colori rappresentabili che compare in una foto ogni pixel codifica un indice allinterno della tavolozza –con tecniche di compressione che non codificano ogni pixel in modo autonomo ma cercano di raggruppare i le aree che hanno caratteristiche comuni Formati più usati : TIFF (tagged image file format), GIF (graphics interchange format), JPEG (Joint photographers expert group)

40 40 Compressione di dati Algoritmi lossless (senza perdita di informazione) : operano un cambiamento di codifica dei dati che permette di diminuire il numero di bit necessari alla rappresentazione –esempio : sequenza di 1 milione di caratteri, A=00, B=01, C=10, D=11, totale 2 milioni di bit di codifica –se A compare il 90% delle volte posso comprimere la codifica nel seguente modo A=0, B=100, C=110, D=111 ottenendo una lunghezza di : * * 3 = bit

41 41 Compressione di dati (2) Algoritmi lossy (che perdono informazione) –generalmente sono specifici di un certo campo e sfruttano le caratteristiche degli oggetti da rappresentare per buttare via informazione poco importanti –gli algoritmi di compressione usati nei formati GIF e JPEG per immagini fisse sfruttano la caratteristica dellocchio umano di essere poco sensibile a lievi cambiamenti di colore in punti contigui, e quindi eliminano questi lievi cambiamenti appiattendo il colore dellimmagine –generalmente è possibile specificare quanto siamo disposti a perdere attraverso alcuni parametri

42 42 Rappresentazione di immagini (7) Immagini in movimento (video …) –il movimento è rappresentato già in modo discreto nei media : con un numero abbastanza alto di fotogrammi fissi (24-30 al secondo) locchio umano percepisce il movimento come un continuo –potrei in principio codificare separatamente ogni fotogramma come immagine fissa, ma lo spazio di memoria richiesto sarebbe enorme (650 MB, un intero CD per un minuto di proiezione …) –sono stati quindi sviluppati metodi di codifica che economizzano, codificando solo le differenze fra un fotogramma e laltro (MPEG)

43 43 Rappresentazione di suoni Caratteristiche dellaudio (e dei segnali analogici) tempo

44 44 Rappresentazione di suoni (2) Campionamento dellaudio ad intervalli di tempo fissi tempo

45 45 Rappresentazione di suoni (3) Campionamento dellaudio ad intervalli di tempo fissi tempo Ogni campione viene rappresentato con un numero finito di bit (quantizzazione)

46 46 Rappresentazione di suoni (4) Laccuratezza della ricostruzione dipende : –da quanto sono piccoli gli intervalli di campionamento –da quanti bit uso per descrivere il suono in ogni campione nella fase di quantizzazione –al solito … maggiore accuratezza significa maggior quantità di memoria occupata! Anche per i suoni si possono utilizzare tecniche di compressione per migliorare loccupazione di memoria della sequenza di campioni

47 47 Rappresentazione di suoni (5) Algoritmi lossy per suoni : sfruttano il fatto che per lorecchio umano suoni a basso volume sovrapposti ad altri di volume maggiore sono poco udibili e possono essere eliminati –è quello che accade nello standard MPEG Layer 3, detto anche MP3

48 48 Lo standard MIME MIME (Multipurpose Internet Mail Extension) è uno standard che permette riconoscere correttamente la codifica di dati di natura diversa (testo, immagini, suoni etc.) Una codifica MIME comprende –un preambolo, in cui viene specificato in modo standard il tipo del dato che stiamo codificando ( text/plain,image/jpeg,image/gif ) –un corpo (body), che contiene la codifica vera e propria

49 49 Lo standard MIME (2) MIME è utilizzato ad esempio per –messaggi di posta elettronica –decodifica corretta di pagine web In entrambi i casi il lapplicazione che legge la posta ( evolution, eudora, outlook ) o lapplicazione che naviga su Web ( mozilla, galeon, explorer ) utilizza il preambolo per decodificare e presentare i dati in modo corretto

50 50 Esercizi, domande etc... –Dare la rappresentazione binaria di 26 –Convertire in decimale –Qual è il massimo numero rappresentabile in binario su 6 cifre? –A quanti bit corrisponde una memoria di 2KB? –È possibile rappresentare linsieme completo dei reali allinterno di un computer?

51 51 Esercizi, domande etc…(2) –A cosa corrisponde il fenomeno delloverflow ? –È possibile dare una codifica non ambigua dei mesi dellanno usando 3 bit? –È più accurata una rappresentazione del suono analogica o digitale? –Cosa si intende per compressione?


Scaricare ppt "1 Codifica e Rappresentazione dellinformazione Cosa vedremo : Rappresentazione binaria Codifica dei numeri Codifica dei caratteri Codifica delle immagini."

Presentazioni simili


Annunci Google