La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Corso di Costruzioni Istituto tecnico per Geometri Duca DAosta di Enna Classe 4° b Geometri A. A. 2009-2010 Prof. Francesco Levanto 30/01/2014Prof. Arch.

Presentazioni simili


Presentazione sul tema: "Corso di Costruzioni Istituto tecnico per Geometri Duca DAosta di Enna Classe 4° b Geometri A. A. 2009-2010 Prof. Francesco Levanto 30/01/2014Prof. Arch."— Transcript della presentazione:

1 Corso di Costruzioni Istituto tecnico per Geometri Duca DAosta di Enna Classe 4° b Geometri A. A Prof. Francesco Levanto 30/01/2014Prof. Arch. francesco Levanto

2 30/01/2014Prof. Arch. francesco Levanto

3 Quando lasse di sollecitazione non coincide con uno degli assi principali dinerzia della sezione, allora si parla di flessione deviata. Essa si può considerare composta da due flessioni rette le quali invece hanno asse momento coincidente con degli assi centrali d'inerzia.flessioni rette L'andamento delle tensioni è dato dalla formula binomia di Navier: σxy=+My/Jz=+My/Wx σxz=+Mz/Jy=+Mz/Wy 30/01/2014Prof. Arch. francesco Levanto

4 piano contenente le forze la generica sezione secondo una direzione che non coincide con uno degli assi principali dinerzia (arcarecci di copertura). 30/01/2014Prof. Arch. francesco Levanto

5 30/01/2014Prof. Arch. francesco Levanto

6 Il carico viene scomposto nelle due direzioni contenenti gli assi principali dinerzia: Pz=Psenα Py=Pcosα 30/01/2014Prof. Arch. francesco Levanto

7 Ciascuna componente di carico produrrà una sollecitazione di tipo M e una conseguente tensione di tipo σx: σxy=+Myy/Jz= +My/Wx σxz=+Mzz/Jy=+Mz/Wy 30/01/2014Prof. Arch. francesco Levanto

8 Si possono ricavare le due tensioni σ come se avessimo contemporaneamente due flessioni rette, una con asse di sollecitazione X e laltra con asse di sollecitazione Y La σ totale (cioè dovuta alla flessione deviata) sarà la somma di tutte e due: σ 1 = +/- Mx / Wy σ 2 = +/- My / Wx σ = σ 1 + σ 2 30/01/2014Prof. Arch. francesco Levanto

9 Calcolo di verifica Note le tensioni ammissibili relative al materiale impiegato per la costruzione dellelemento strutturale e le dimensioni della sezione di quest'ultimo, in ogni punto le tensioni interne devono risultare inferiori a quelle ammissibili, ossia: σ = ± Mx/Wx ± My/Wy che rappresenta la formula di verifica 30/01/2014Prof. Arch. francesco Levanto

10 Calcolo di progetto Per la maggiore economia strutturale è necessario che si abbia: + Mx / Wx + My / Wy = σamm In questa relazione però si hanno due incognite W x e W y in quanto non sono note le dimensioni della sezione; per le sezioni commerciali in ferro e in legno è possibile individuare gruppi di sezioni che presentano un rapporto costante fra i moduli di resistenza principali, per cui si può porre: Wx / Wy = c 30/01/2014Prof. Arch. francesco Levanto

11 che assume i seguenti valori: c = 1,4 per le sezioni rettangolari in legno; c = 7,5 per i profilati INP; e = 3 per i profilati HE da 100 a 320; c = 5- 6 per i profilati HE da 340 a 600; c = 8 per i profilati IPE da 140 a 220; c=9 per i profilati IPE da 240 a 600; c = 6 per i profilati UPN da 120 a 160; c= 7 -8 per i profilati UPN da 180 a 320. si ricava: Wy = Wx /c E sostituendo Mx / Wx + c Wy / Wx Ossia (Mx + c Wy) / Wx = σamm Wx = Mx + c Wy / σamm Che rappresenta la formula di progetto 30/01/2014Prof. Arch. francesco Levanto

12 Per angoli a = 20° - 30° circa è possibile semplificare il calcolo, adottando una tensione ammissibile ridotta pari a circa 2/3 di quella normale, effettuando quindi il dimensionamento della sezione con la formula della flessione semplice: Wx= M/ σamm 30/01/2014Prof. Arch. francesco Levanto

13 Calcolo di collaudo Note le dimensioni della sezione e il materiale con il quale è realizzato l'elemento strutturale, si vuole conoscere il carico massimo che può gravare su di esso in funzione del momento flettente massimo ammissibile; sostituendo si ha: M*cosα /Wx +M sen α/ Wy = σam Cioè M*(cosα /Wx +sen α /Wy) = σam Da cui M= σam / (cosα /Wx +sen α /Wy) che rappresenta la formula di collaudo. 30/01/2014Prof. Arch. francesco Levanto

14 TESTI DI RIFERIMENTO: Corso modulare di costruzioni Umberto Alasia – Maurizio Pugno Corso di costruzioni edizione modulare di Salvatore Di pasquale, C. Messina, L.Paolini, B. Furiozzi 30/01/2014Prof. Arch. francesco Levanto


Scaricare ppt "Corso di Costruzioni Istituto tecnico per Geometri Duca DAosta di Enna Classe 4° b Geometri A. A. 2009-2010 Prof. Francesco Levanto 30/01/2014Prof. Arch."

Presentazioni simili


Annunci Google