La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Sistemi Discreti con Dinamica Indecidibile Marco Giunti Marco Giunti Università di Cagliari

Presentazioni simili


Presentazione sul tema: "Sistemi Discreti con Dinamica Indecidibile Marco Giunti Marco Giunti Università di Cagliari"— Transcript della presentazione:

1 Sistemi Discreti con Dinamica Indecidibile Marco Giunti Marco Giunti Università di Cagliari

2 Sommario Per molti sistemi discreti, dato uno stato iniziale arbitrario, non sarebbe possibile determinarne il comportamento dinamico a lungo termine (Wolfram 1984a, 2002); farò vedere come si possa render conto in modo rigoroso dell'intuizione di Wolfram, fondandomi su un risultato molto generale che classifica i diversi tipi possibili di dinamica di un sistema discreto (Giunti 2005).

3 Regola Numero della regola = Tempo Tempo Dodici celle disposte in circolo. Ciascuna cella può assumere i valori 0 o 1. Quindi, lAC ha 2 12 = 4096 stati possibili. Un Automa Cellulare Finito

4 64 stati – 60 copie32 stati – 6 copie 16 stati – 4 copie Totale: 4096 = 2 12 stati Costituenti dello spazio degli stati dellAC regola 90 (con 12 celle disposte in circolo)

5 I primi studi di Wolfram sugli AC Negli anni 80 Wolfram (1983a) studiò sistematicamente i 256 AC più semplici (modimensionali, con 2 valori, e intorno di raggio 1); Negli anni 80 Wolfram (1983a) studiò sistematicamente i 256 AC più semplici (modimensionali, con 2 valori, e intorno di raggio 1); li classificò secondo 4 tipi di comportamento qualitativamente simile (Wolfram 1983b, 1984b) e cioè: li classificò secondo 4 tipi di comportamento qualitativamente simile (Wolfram 1983b, 1984b) e cioè: AC la cui evoluzione porta a AC la cui evoluzione porta a 1.uno stato omogeneo; 2.un insieme di strutture separate semplici, stabili o periodiche; 3.un andamento caotico; 4.strutture localizzate complesse, spesso di lunga durata.

6 Le ipotesi di Wolfram Wolfram ipotizzò che i sistemi di tipo 4 fossero computazionalmente universali (1984b, 31); Wolfram ipotizzò che i sistemi di tipo 4 fossero computazionalmente universali (1984b, 31); egli ha poi dimostrato (2002, ) che la regola 110 (di tipo 4, monodimensionale, 2 valori, raggio 1) è universale; egli ha poi dimostrato (2002, ) che la regola 110 (di tipo 4, monodimensionale, 2 valori, raggio 1) è universale; infine, sulla base di studi estensivi della dinamica di molti tipi di sistemi discreti, Wolfram è arrivato a formulare il seguente principio estremamente generale: infine, sulla base di studi estensivi della dinamica di molti tipi di sistemi discreti, Wolfram è arrivato a formulare il seguente principio estremamente generale: Principio di Equivalenza Computazionale (PEC) Principio di Equivalenza Computazionale (PEC) Quasi tutti i processi che non sono ovviamente semplici possono essere visti come computazioni di sofisticazione equivalente (2002, ) Quasi tutti i processi che non sono ovviamente semplici possono essere visti come computazioni di sofisticazione equivalente (2002, )

7 Il significato dellipotesi delluniversalità Per quanto riguarda lipotesi delluniversalità dei sistemi di tipo 4, essa significa che un tale sistema è capace di emulare, cioè riprodurre esattamente, il comportamento di tutta una classe di sistemi che si sa essere computazionalmente universale; Per quanto riguarda lipotesi delluniversalità dei sistemi di tipo 4, essa significa che un tale sistema è capace di emulare, cioè riprodurre esattamente, il comportamento di tutta una classe di sistemi che si sa essere computazionalmente universale; per es., la dimostrazione delluniversalità della regola 110 fa vedere che, con opportune condizioni iniziali, essa può emulare un qualsiasi tag system (la classe dei tag system è universale perché ogni macchina di Turing può a sua volta essere emulata da un opportuno tag system). per es., la dimostrazione delluniversalità della regola 110 fa vedere che, con opportune condizioni iniziali, essa può emulare un qualsiasi tag system (la classe dei tag system è universale perché ogni macchina di Turing può a sua volta essere emulata da un opportuno tag system).

8 Un esempio di emulazione fra due AC AC 18 emula AC 90, in due passi, con condizioni iniziali 00 per 0 e 01 per 1 (Wolfram 1983b, 20) AC 18 emula AC 90, in due passi, con condizioni iniziali 00 per 0 e 01 per 1 (Wolfram 1983b, 20) Numero della regola = Numero della regola = 18 10

9 Conseguenze del Principio di Equivalenza Computazionale (PEC) Ubiquità delluniversalità computazionale Ubiquità delluniversalità computazionale –Quasi ogni sistema il cui comportamento non sia ovviamente semplice deve essere capace di raggiungere lo stesso livello di sofisticazione computazionale, e quindi deve in effetti essere universale. (Wolfram 2002, 718) –A rigore, però, questo non segue dalla formulazione precedente del principio. E piuttosto una diversa formulazione del principio stesso. Ubiquità della complessità Ubiquità della complessità –In base al PEC, gli osservatori tendono ad essere computazionalmente equivalenti ai sistemi che essi osservano, con linevitabile conseguenza che essi considereranno complessi quei sistemi. (Wolfram 2002, 737)

10 Altre conseguenze del Principio di Equivalenza Computazionale (PEC) Irriducibilità computazionale Irriducibilità computazionale –In base al PEC, non ci possiamo aspettare che i sistemi che usiamo per fare predizioni possano fare computazioni più sofisticate delle computazioni che si trovano in molti dei sistemi di cui cerchiamo di predire il comportamento. E da ciò segue che per molti sistemi non si può fare alcuna predizione sistematica, così che non cè alcun modo di cortocircuitare il loro processo di evoluzione, e di conseguenza il loro comportamento deve essere considerato computazionalmente irriducibile. (Wolfram 2002, 741) Libero arbitrio (segue dallirriducibilità computazionale) Libero arbitrio (segue dallirriducibilità computazionale) –E quindi, in conclusione, che cosa ci fa pensare che ci sia libertà in ciò che un sistema fa? In pratica, il criterio principale sembra essere che non possiamo predire con facilità il comportamento del sistema. (Wolfram 2002, 751)

11 Ultima conseguenza del Principio di Equivalenza Computazionale (PEC) Indecidibilità dinamica (segue dallirriducibilità computazionale) Indecidibilità dinamica (segue dallirriducibilità computazionale) –E ciò che sospetto è che, per quasi tutti i sistemi il cui comportamento ci sembra complesso, quasi tutte le domande non- triviali che riguardano ciò che il sistema farà in un numero infinito di passi saranno indecidibili. (Wolfram 2002, 755)

12 Un Sistema Dinamico (DS) è un modello matematico che esprime lidea di un sistema deterministico arbitrario (discreto/continuo, revers./irrevers.) Sistema DinamicoDS Un Sistema Dinamico (DS) è un modello (M, (g t ) t T ) tale che: 1. 1.linsieme M non è vuoto; M è detto lo spazio degli stati del sistema; 2. 2.linsieme T è Z, Z + (interi), oppure R, R + (reali); T è detto linsieme tempo; 3. 3.(g t ) t T è una famiglia di funzioni da M a M; ciascuna funzione g t è detta una transizione di stato o un t­ avanzamento del sistema; 4. 4.per ogni t e w T, per ogni x M, a. a.g 0 (x) = x; b. b.g t+w (x) = g w (g t (x)).

13 Significato intuitivo della definizione di sistema dinamico gt+wgt+w x gwgw x g0g0 x gtgt t0t0 t0+tt0+t gt(x)gt(x) t gtgt

14 Emulazione fra due DS – Intuizione ed esempi Intuitivamente, un DS emula un secondo DS quando il primo riproduce esattamente tutta la dinamica del secondo. Intuitivamente, un DS emula un secondo DS quando il primo riproduce esattamente tutta la dinamica del secondo. Esempi – (i) una macchina di Turing universale emula tutte le MT; (ii) per ogni MT cè un AC che emula MT e viceversa; (iii) si ha emulazione fra i due semplici AC considerati prima (AC 18 emula AC 90). Esempi – (i) una macchina di Turing universale emula tutte le MT; (ii) per ogni MT cè un AC che emula MT e viceversa; (iii) si ha emulazione fra i due semplici AC considerati prima (AC 18 emula AC 90).

15 Emulazione fra due DS – Definizione (Giunti 1997 equivalente a questa) 1.per ogni a, b D, per ogni t T +, cè v V + tale che, se g t (a) = b, allora h v (u(a)) = u(b); 2.per ogni c, d N, per ogni v V +, cè t T + tale che, se h v (c) = d, allora g t (u ­1 (c)) = u ­1 (d). a b gtgt u hvhv u gtgt u -1 hvhv d c DS 1 = (M, (g t ) tT ) emula DS 2 = (N, (h v ) vV ) sse: esiste D M, esiste u: D N, biiettiva, tale che M MNN DD

16 Due definizioni importanti Un costituente di un sistema dinamico DS = (M, (g t ) t T ) è un sottosistema di DS il cui spazio degli stati N M è temporalmente connesso e contiene tutto il suo passato (nonché il suo futuro). Un costituente di un sistema dinamico DS = (M, (g t ) t T ) è un sottosistema di DS il cui spazio degli stati N M è temporalmente connesso e contiene tutto il suo passato (nonché il suo futuro). Un sistema dinamico è indecomponibile sse ha un solo costituente (cioè, sé stesso). Un sistema dinamico è indecomponibile sse ha un solo costituente (cioè, sé stesso).

17 Due risultati generali (Giunti 2005) Teorema di decomposizione (per sistemi dinamici in generale) Teorema di decomposizione (per sistemi dinamici in generale) Ogni sistema dinamico è identico alla composizione di tutti i suoi costituenti. Ogni sistema dinamico è identico alla composizione di tutti i suoi costituenti. Teorema di classificazione (per sistemi discreti indecomponibili) Teorema di classificazione (per sistemi discreti indecomponibili) Il grafo dello spazio degli stati di un qualunque sistema dinamico discreto indecomponibile è di una delle seguenti forme (i) – (vii). In particolare, (i) e (ii) sono le possibili forme generali del grafo di un sistema reversibile; (iii) e (iv) quelle di un sistema logicamente reversibile; (v), (vi) e (vii) di un sistema logicamente irreversibile. Il grafo dello spazio degli stati di un qualunque sistema dinamico discreto indecomponibile è di una delle seguenti forme (i) – (vii). In particolare, (i) e (ii) sono le possibili forme generali del grafo di un sistema reversibile; (iii) e (iv) quelle di un sistema logicamente reversibile; (v), (vi) e (vii) di un sistema logicamente irreversibile.

18 Sistemi Reversibili Sistemi Logicamente Reversibili (i) Sistemi Periodici – un ciclo bi­orientato di n nodi (n 1) (ii) Sistemi Aperiodici Non-confluenti – una linea bi­ orientata, infinita in ambedue i sensi Infiniti Finiti Infiniti (iii) Sistemi periodici – un ciclo orientato di n nodi (n 1) (iv) Sistemi Aperiodici Non-confluenti – una linea orientata, infinita in uno solo o in ambedue i sensi

19 (v) Sistemi Eventualmente Periodic Non-confluenti – un ciclo orientato a cui si attacca una semplice linea possibilmente infinita Sistemi Logicamente Irreversibili (Finiti o Infiniti)

20 (vi) Sistemi Eventualmente Periodici Confluenti – un ciclo orientato a cui si attaccano le radici di un numero finito di alberi possibilmente infiniti (sia in altezza che in ramificazione); o al ciclo si attaccano almeno due alberi, oppure lunico albero ad esso attaccato ha diverse diramazioni (cioè, non è una semplice linea) Sistemi Logicamente Irreversibili (Finiti o Infiniti)

21 (vii) Sistemi Aperiodici Confluenti – una linea orientata infinita in uno solo o in ambedue i sensi, a cui si attaccano le radici di un numero possibilmente infinito di alberi possibilmente infiniti (sia in altezza che in ramificazione) Sistemi Logicamente Irreversibili (Infiniti)

22 Ancora una definizione Due stati x e y sono dinamicamente equivalenti sse esiste t 0 tale che, per ogni v t, g v (x) = g v (y). Due stati x e y sono dinamicamente equivalenti sse esiste t 0 tale che, per ogni v t, g v (x) = g v (y). Ovviamente, due stati sono dinamicamente equivalenti sse essi appartengono allo stesso costituente. Ovviamente, due stati sono dinamicamente equivalenti sse essi appartengono allo stesso costituente.

23 Quando possiamo dire che il comportamento dinamico a lungo termine di un sistema discreto è decidibile? Le due seguenti condizioni sono ambedue necessarie (e forse anche congiuntamente sufficienti): Le due seguenti condizioni sono ambedue necessarie (e forse anche congiuntamente sufficienti): 1.dati due stati qualunque x e y, esiste una procedura meccanica che decide se x e y sono o non sono dinamicamente equivalenti; 2.dato un qualunque stato x, esiste una procedura meccanica che stabilisce la forma generale (i)-(vii) del costituente a cui x appartiene.

24 La condizione 2 fallisce per tutti i sistemi universali Sappiamo che, se DS è universale, il suo problema della fermata è indecidibile, e cioè: non esiste una procedura meccanica che decide, per uno stato x arbitrario, se lorbita di x è o non è (eventualmente) periodica con periodo 1; Sappiamo che, se DS è universale, il suo problema della fermata è indecidibile, e cioè: non esiste una procedura meccanica che decide, per uno stato x arbitrario, se lorbita di x è o non è (eventualmente) periodica con periodo 1; ma è facile vedere che, se la condizione 2 è soddisfatta, il problema della fermata di DS è decidibile; ma è facile vedere che, se la condizione 2 è soddisfatta, il problema della fermata di DS è decidibile; ne segue che, per un sistema universale qualunque, la condizione 2 è falsa, e cioè: non abbiamo una procedura meccanica che ci permette di stabilire la forma generale del costituente di un suo stato arbitrario. ne segue che, per un sistema universale qualunque, la condizione 2 è falsa, e cioè: non abbiamo una procedura meccanica che ci permette di stabilire la forma generale del costituente di un suo stato arbitrario.

25 Conclusione: lindecidibilità dinamica nei sistemi discreti Cè dunque un senso ben preciso in cui la dinamica di un sistema universale può essere detta indecidibile (e cioè, il fallimento della condizione 2); Cè dunque un senso ben preciso in cui la dinamica di un sistema universale può essere detta indecidibile (e cioè, il fallimento della condizione 2); se lipotesi di Wolfram sullubiquità delluniversalità computazionale risultasse vera, allora la dinamica di quasi tutti i sistemi il cui comportamento non sia ovviamente semplice risulterebbe indecidibile esattamente in questo senso. se lipotesi di Wolfram sullubiquità delluniversalità computazionale risultasse vera, allora la dinamica di quasi tutti i sistemi il cui comportamento non sia ovviamente semplice risulterebbe indecidibile esattamente in questo senso.

26 E tutto Grazie

27 Indicazioni bibliografiche Giunti, Marco (1996), Beyond Computationalism, in Garrison W. Cottrel (ed.), Proceedings of the 18th Annual Conference of the Cognitive Science Society. Mahwah, NJ: L. Erlbaum Associates, (1997), Computation, Dynamics, and Cognition. New York: Oxford University Press. (1998), Is Computationalism the Hard Core of Cognitive Science?, in Vito M. Abrusci, Carlo Cellucci, Roberto Cordeschi, and Vincenzo Fano (eds.), Prospettive della logica e della filosofia della scienza: Atti del convegno triennale della Società Italiana di Logica e Filosofia delle Scienze, Roma, 3-5 gennaio Pisa: Edizioni ETS, (2004), Is Being Computational an Intrinsic Property of a Dynamical System?, forthcoming in Gianfranco Minati, and Eliano Pessa (eds.), Proceedings of the Third National Conference on Systems Science (A.I.R.S.). New York: Kluwer Academic/Plenum Publishers. URL = (2005) Toward a Theory of Intrinsic Computability, draft. URL = Wolfram, Stephen (1983a), Statistical Mechanics of Cellular Automata, Reviews of Modern Physics 55, 3: (1983b), Cellular Automata, Los Alamos Science 9:2-21. (1984a), Computer Software in Science and Mathematics, Scientific American 56: (1984b), Universality and Complexity in Cellular Automata, in Doyne Farmer, Tommaso Toffoli, and Stephen Wolfram (eds.), Cellular Automata. Amsterdam: North Holland Publishing Company, (2002), A New Kind of Science. Champaign, IL: Wolfram Media, Inc.


Scaricare ppt "Sistemi Discreti con Dinamica Indecidibile Marco Giunti Marco Giunti Università di Cagliari"

Presentazioni simili


Annunci Google