La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Tema 1: Misura della probabilità di eventi Esempio: Sistema di trasmissione dati Schema di principio di un semplice sistema di trasmissione dati binario.

Presentazioni simili


Presentazione sul tema: "Tema 1: Misura della probabilità di eventi Esempio: Sistema di trasmissione dati Schema di principio di un semplice sistema di trasmissione dati binario."— Transcript della presentazione:

1 Tema 1: Misura della probabilità di eventi Esempio: Sistema di trasmissione dati Schema di principio di un semplice sistema di trasmissione dati binario in banda base a k : sequenza di bit da trasmettere g T (t): risposta impulsiva filtro sagomatore dimpulsi in Tx. s(t): segnale trasmesso n(t): disturbo in ricezione g R (t): risposta impulsiva filtro anti-disturbo in Ric. T b : intervallo temporale tra i bit Z k : variabile aleatoria (v.a.) campione in ingresso al decisore 1 W k : v.a. effetto del disturbo filtrato Ex.: Ethernet, Tx. dati PC-stampante g R (t) t k =kT b Campionamento Decisore a 2 livelli Simboli binari decisi ZkZk akak n(t) s(t) g T (t) akak Sorgente binaria cadenza T b

2 Variabili Aleatorie Binarie & Binomiali Teorema di Bernoulli (o Legge dei grandi numeri) : ovvero, la frequenza di presentazione F tende alla probabilità p che levento si verifichi

3 Statistiche della sorgente binaria - Generare una sequenza di n=10 5 bit {a k } equiprobabili (p=0.5) Sugg.: si utilizzi una trasformazione di v.a. del tipo funzione a gradino, applicandola ad una v.a. uniforme su [0,1] [istruzioni utili : rand, round, save ] - Verificare che i bit trasmessi sono equiprobabili (ovvero misurare p) Sugg.: interpretazione della probabilità come frequenza relativa... [istruzioni utili: load, mean ] - Ripetere la verifica utilizzando solo i primi m bit e tracciare un grafico della frequenza relativa di presentazione dellevento {a k =1} in funzione di m, con 1

4 Esempio di file.m & risultati % Generatore sequenza bit trasmessi: genseq.m % OUT: fileseqtx con la sequenza dei simboli binari ed equiprobab. clear clc %bit trasmessi equiprobabili ns=1e4 %lunghezza sequenza seqtx=rand(1,ns); % genera v.a. uniforme su [0,1] seqtx=round(seqtx); % trasf. di v.a. per ottenere la v.a. % discreta valore del bit save fileseqtx seqtx Valutazione sperimentale di Pr{a k =1}: con n=10 5 bit Ex.: con m=50 bit per un generico m>mean(seqtx) >>mean(seqtx(1:50)) >>mean(seqtx(1:m)) = = Valore effettivo : p=Pr{A k =1}= 0.5

5 V.A. campione in ricezione al decisore: con v.a. Gaussiana a media nulla e varianza Regola del decisore: La probabilità di errore sui bit è, per il Teorema della Probabilità Totale, La soglia di decisione è equidistante rispetto ai valori La Gaussiana è una distribuzione simmetrica rispetto al val. medio Uguali probabilità di errore per la decisione sui bit 1 e sui bit 0 Statistiche del segnale decodificato

6 - Generare i campioni osservati Z k in ricezione, in ingresso al decisore, a partire dalla sequenza di bit trasmessi, includendo il disturbo Gaussiano, e ricavare i bit decodificati Utilizzare i valori e [istruzioni utili: load, size, randn, sign ] - Valutare sperimentalmente la probabilità di errore (BER, bit error rate) confrontando la sequenza trasmessa (n=10 5 bit ) e quella ricevuta per i due valori di [istruzioni utili: xor, mean ] - Confrontare il risultato sperimentale con quello teorico [istruzioni utili: normcdf ] - Ripetere la valutazione sperimentale utilizzando solo i primi m=500 bit Statistiche del segnale decodificato (2)

7 % Simulazione decisore e valutazione della BER: valber.m function ber = valber(sigma) % IN: deviaz. standard disturbo load fileseqtx seqtx % carica la sequenza bit trasmessi zeta=seqtx+randn(1,size(seqtx,2))*sigma; % simula i campioni al decisore seqri=(1+sign(zeta-1/2))/2; % effettua le decisioni seqer=xor(seqri,seqtx); % calcola la sequenza degli errori ber=mean(seqer) % calcola la probabilità di errore Valutazione sperimentale di P e utilizzando n=10 5 bit: con con = = (valore effettivo: BER=10 -2 ) (valore effettivo: BER=10 -1 ) = = Utilizzando solo m=500 bit: Esempio di file.m & risultati (valore effettivo: BER=10 -2 ) (valore effettivo: BER=10 -1 )

8 BER misurata: Esempio di risultati: Misura della BER Andamento teorico della BER: P e misurata utilizzando n=10000 bit P e misurata utilizzando n=10 5 bit P e misurata utilizzando m=500 bit

9 % bersnr.m % Confronto tra valutazione e valore teorico della BER % al variare della deviazione standard del disturbo % generatore sequenza bit trasmessi clear clc % bit trasmessi equiprobabili ns=10000 % lunghezza sequenza seqtx=rand(1,ns); % genera v.a. uniforme su [0,1] seqtx=round(seqtx); % trasf. di v.a. per ottenere la v.a. discreta valore del bit % simulazione decisore e valutazione probabilita' di errore sequenza bit ricevuti sigma2i=[.001:5:80]; % valori di 1/sigma^2 del termine di disturbo (SNR=1/sigma^2) sigma=sqrt(1./sigma2i); % valori di sigma zeta=repmat(seqtx.',1,size(sigma,2))+randn(1,size(seqtx,2)).'*sigma; % simula i campioni al decisore % per le varie deviazioni standard seqri=(1+sign(zeta-1/2))/2; % effettua le decisioni % per le varie sequenze seqer=xor(seqri,repmat(seqtx.',1,size(sigma,2))); % calcola le sequenze degli errori ber=mean(seqer); % calcola le probabilità di errore semilogy(sigma2i,ber,'-o') % grafica le probabilità di errore grid axis([min(sigma2i) max(sigma2i) 1e-5 1]) xlabel('SNR(db)') ylabel('BER') hold on semilogy(sigma2i,1-normcdf(.5./sigma),'-xr') % grafica i valori teorici


Scaricare ppt "Tema 1: Misura della probabilità di eventi Esempio: Sistema di trasmissione dati Schema di principio di un semplice sistema di trasmissione dati binario."

Presentazioni simili


Annunci Google