La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Presupposti alla lezione Si presuppone che sia noto: Lanalisi della varianza a una via Lanalisi della varianza a più vie fattoriale Contrasti e confronti.

Presentazioni simili


Presentazione sul tema: "Presupposti alla lezione Si presuppone che sia noto: Lanalisi della varianza a una via Lanalisi della varianza a più vie fattoriale Contrasti e confronti."— Transcript della presentazione:

1 Presupposti alla lezione Si presuppone che sia noto: Lanalisi della varianza a una via Lanalisi della varianza a più vie fattoriale Contrasti e confronti multipli tra medie

2 Argomenti trattati Gli schemi più usati in Agronomia Schema a randomizzazione completa schema a blocchi randomizzati schema a quadrato latino Schemi a split-plot ulteriori trattamenti nello split-plot schemi a strip splot ulteriori trattamenti nello strip-plot Il dimensionamento degli esperimenti criteri per la determinazione del numero di ripetizioni criteri per la determinazione della dimensione delle unità sperimentali Cenni a schemi sperimentali meno frequentemente utilizzati

3 Consiste: Nellattribuire mediante sorteggio, un trattamento a a ogni unità sperimentale, non considerando la sua posizione fisica Si usa: in indagini territoriali scegliendo campioni completamente casuali. (non è possibile predisporre uno schema) Talvolta in prove in ambiente controllato o in laboratorio (situazioni in cui i fattori non sperimentali sono controllati al meglio). Non si usa: In prove impostate in campo poiché non offre nessun controllo della variabilità accidentale, che è sempre elevata Schema a randomizzazione completa

4 Il MODELLO dellANOVA a BLOCCHI Y ij = + i + j + ij ij Il valore di un dato (Y ijk ) è la somma delleffetto di uno specifico livello del 1° fattore ( i ), delleffetto del blocco di appartenenza ( j ) e di una componente accidentale ( ij ). E esplicitamente esclusa linterazione tra blocco e trattamento

5 Schema a randomizzazione completa: esempio 4 trattamenti, 3 ripetizioni 1) tracciare 4 * 3 =12 parcelle 2) attribuire a ogni parcella il proprio trattamento mediante sorteggio 3) esecuzione esperimento e raccolta risultati 4) elaborazione dei dati secondo la tecnica usuale di analisi della varianza a 1 via A1 A2 A4 A3 A4 A1 A2 A3 Qui le unità sperimentali sono rappresentate come adiacenti ma non è affatto necessario che lo siano

6 Schema a blocchi randomizzati Consiste: nel suddividere larea sperimentale in blocchi in modo che i blocchi abbiano la massima omogeneità al loro interno e siano il più possibile differenziati tra loro. Disporre casualmente i trattamenti in modo che in ogni blocco sia rappresentato uno e un solo trattamento. Si usa: nella gran parte delle prove di tipo manipolativo (è lo schema più usuale in prove agronomiche). Richiede: esperimenti bilanciati Offre: la possibilità di controllare, almeno in parte, gli effetti delleterogeneità del terreno, migliorando la potenza dellesperimento. Consente di eliminare dallerrore sperimentale la variabilità tra i blocchi. La possibilità di suddividere il lavoro tra più operatori o in più giorni (1 per blocco) ed eliminarne la conseguente variabilità.

7 Disposizione e forma dei blocchi Dipende dai gradienti di fertilità. In caso di un solo gradiente, predisporre blocchi lunghi e stretti perpendicolari al gradiente stesso. In presenza di 2 gradienti perpendicolari, predisporre blocchi in quadrato e di forma quadrata. Lo stesso non conoscendo i gradienti gradiente Blocco 1Blocco 2Blocco 3Blocco 4 gradiente Blocco 1 Blocco 2 Blocco 3 Blocco 4 gradiente

8 Schema a blocchi randomizzati: esempio 4 trattamenti, 3 ripetizioni 1) tracciare 3 blocchi, suddividerli in 4 parcelle 2) attribuire, nellambito di ogni blocco, a ogni parcella il proprio trattamento mediante sorteggio (occorrono 3 sorteggi) 3) esecuzione esperimento e raccolta risultati 4) elaborazione dei dati sottraendo devianza e gradi di libertà dei blocchi da quelli dellerrore di una ANOVA a 1 via eseguita trascurando i blocchi. A1 A2 A4 A3 A4 A1 A2 A3 Blocco 1Blocco 3Blocco 2

9 Schema a blocchi randomizzati: calcoli Per il calcolo della devianza trattamenti procedere come in ANOVA ordinaria Per il calcolo della devianza blocchi, procedere usualmente, considerando i blocchi come fossero trattamenti (ovvero sostituire a ogni parcella del blocco il valore medio del blocco e calcolare la devianza di tutti i dati). Blocco 1Blocco 3Blocco 2

10 Schema a blocchi randomizzati: calcoli (segue) Le devianze: GL trattamenti = nt - 1 GL blocchi = nb-1 GL errore = (nt-1) x (nb-1) o per sottrazione I gradi di libertà Le varianze e i rapporti F sono quelli usuali

11 Il giudizio sulla significatività delleffetto dei trattamenti è in base al valore di P(F). La P(F) relativa ai blocchi indica se lapplicazione dello scema a blocchi è risultata efficace; se P(F) > i blocchi sono inutili. Viceversa, i blocchi hanno apportato una significativa riduzione dellerrore sperimentale. SE leffetto dei blocchi è significativo, si può valutare il parametro di efficienza relativa (R.E.) rispetto allo schema a randomizzazione completa: (la formula è valida se Gl e >20, se no è necessaria una correzione, altrimenti R.E. è sovrastimata) R.E. è il fattore moltiplicativo del numero di ripetizioni di un esperimento a randomizzazione completa necessario per ottenere la stessa potenza dellesperimento a blocchi in esame Schema a blocchi randomizzati: tabella ANOVA e interpretazione

12 Contrasti e confronti multipli in uno schema a blocchi randomizzati Sono eseguiti come ordinario, utilizzando per calcolare lerrore standard della differenza tra medie la varianza errore

13 Requisiti per lANOVA a blocchi randomizzati Gli stessi dello schema a randomizzazione completa: 1) Normalità delle popolazioni da cui sono tratti i campioni (verificata attraverso la normalità dei residui). 2) Omogeneità delle varianze. 3) Indipendenza dei trattamenti. 4) In più: ASSENZA DI INTERAZIONE TRA TRATTAMENTI E BLOCCHI. Analisi di normalità dei residui e omogeneità delle varianze 1) calcolo dei residui: in base al modello dellANOVA a blocchi, il valore medio atteso dell i-esimo trattamento appartenente al J-esimo blocco è: e quindi

14 Analisi dei residui nellANOVA a blocchi randomizzati I residui così calcolati si possono sottoporre agli usuali test di normalità (P-P plot, Shaphiro & Wilks, Kolmogorov) e si possono fare test di omogeneità delle varianze, sia rispetto ai trattamenti sia rispetto ai blocchi (Levene test). E interessante anche lanalisi grafica, che può visualizzare la presenza di interazioni trattamenti-blocchi. In questi grafici non si evidenzia né interazione né non omogeneità delle varianze.

15 Analisi dei residui nellANOVA a blocchi randomizzati (segue) In questi grafici si evidenzia non omogeneità delle varianze e possibile interazione trattamento x blocchi Esiste un test, dovuto a Tukey, per verificare la presenza di interazione, basato sullassumere linterazione in una forma particolare: ( ) ij = i j; in questa forma si ha 1 GL per linterazione. La derivazione matematica è oltre gli obbiettivi del corso; lapplicazione, semplice, si trova su tutti i testi


Scaricare ppt "Presupposti alla lezione Si presuppone che sia noto: Lanalisi della varianza a una via Lanalisi della varianza a più vie fattoriale Contrasti e confronti."

Presentazioni simili


Annunci Google