La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che si disperde dallinterno di un edificio, attraverso una parete di gesso.

Presentazioni simili


Presentazione sul tema: "ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che si disperde dallinterno di un edificio, attraverso una parete di gesso."— Transcript della presentazione:

1 ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che si disperde dallinterno di un edificio, attraverso una parete di gesso spessa 5 cm, avente una superficie di 10 m 2. La temperatura allinterno e allesterno valgono rispettivamente 20 °C e 0 °C. Conducibilità termica del gesso gesso = 0,5 W/m K A = 10 m 2 L =0,05 m T 1 = 20 °C T 2 = 0 °C

2 ES. 2 Si consideri una parete alta 3 m, larga 5 m e spessa 0,3 m, di conducibilità termica = 0,9 W/(m °C). Le temperature delle superfici interna ed esterna della parete risultano 16 °C e 2 °C, rispettivamente. Si determini la potenza termica dissipata attraverso la parete: Si ipotizza che le temperature delle superfici della parete rimangano costanti sufficientemente a lungo in modo da considerare la trasmissione di calore stazionaria. Si assume inoltre monodimensionale la trasmissione di calore attraverso la parete, dal momento che solo in direzione normale alla parete si avrà un gradiente termico significativo. Area parete = 15 m 2 = 0,9 W/(m °C) T = 14 °C L = 0,3 m

3 ES. 2 Tenendo presente che la trasmissione di calore attraverso la parete avviene per conduzione, la potenza termica stazionaria trasmessa attraverso la parete è: Lo stesso valore di potenza termica stazionaria si ottiene utilizzando la resistenza termica : dove sostituendo

4 ES. 3 Si consideri uno scambio termico stazionario tra due ampi piani paralleli a temperatura costante T 1 = 300 K e T 2 = 200 K posti ad una distanza uno dallaltro di L = 1 cm. Assumendo che le superfici siano nere (emissività e = 1), si determini la potenza termica trasmessa tra i piani per una superficie di area unitaria, ipotizzando che lo spazio tra i piani sia: -a) riempito con aria atmosferica; -b) riempito con materiale isolante tipo uretano; -c) riempito con un superisolante di conducibilità termica apparente l superisolante = 0,00002 W/(m × °C). Conducibilità termica aria (T media = 250 K) l aria = 0,0223 W/(m × °C) Conducibilità termica isolante tipo uretano l isolante = 0,026 W/(m × °C) Conducibilità termica superisolante l superisolante = 0,00002 W/(m × °C) D T = 100 K L = 0,01 m

5 ES. 3 a) Trascurando qualunque corrente convettiva naturale che può avere luogo nellaria, le potenze termiche trasmesse per conduzione e radiazione tra i piani attraverso laria sono: b) Un materiale solido opaco posizionato tra due piani ostacola lo scambio termico radiativo, la conducibilità termica del poliuretano tiene conto dello scambio termico radiativo che si può avere attraverso i vuoti del materiale. La potenza termica trasmessa sarà dunque:

6 ES. 3 c) Lo strato di superisolante impedisce qualunque scambio termico diretto di tipo radiativo tra i due piani. In ogni caso, si avrà scambio termico radiativo tra i vari strati del superisolante e di questo tiene conto la conducibilità termica apparente. Si ha quindi:

7 ES. 4 Una sfera di rame di 10 cm di diametro, immersa in aria a 25 °C, si raffredda da 150 °C ad una temperatura di 100 °C in trenta minuti. Si determini: - la quantità totale di calore trasmesso dalla sfera di rame; - la potenza termica media trasmessa dalla sfera; - il flusso termico medio; - il coefficiente di scambio termico convettivo allinizio del raffreddamento Temperatura aria ambiente 25 °C D T della sfera in 30 min = 50 °C Diametro della sfera D = 0,1 m Area della sfera p D 2 Volume della sfera p D 3 /6 c p rame = kJ/kg K r rame = 8950 kg/m 3

8 ES. 4 Osservando che la trasmissione di calore costituisce lunica forma di scambio di energia, il principio di conservazione dellenergia richiede che la quantità di calore trasmesso dalla sfera uguagli la variazione di energia interna: quindi: Normalmente la potenza termica trasmessa durante un processo varia nel tempo; si può comunque determinare la potenza termica trasmessa media dividendo la quantità di calore trasmesso per lintervallo di tempo, perciò:

9 ES. 4 Si definisce flusso termico lo scambio termico riferito allunità di tempo e alla superficie di area unitaria ovvero la potenza termica per una superficie di area unitaria. Il flusso termico medio risulta: La legge di Newton per lo scambio termico convettivo è: Trascurando qualunque scambio termico per irraggiamento e quindi assumendo che lintera perdita di calore della palla abbia luogo per convezione, il coefficiente di scambio termico convettivo allinizio del raffreddamento è:

10 Si consideri una finestra vetrata delle dimensioni 0.8 m × 1,5 m e dello spessore di 8 mm, caratterizzata da una conducibilità termica = 0,78 W/(m· °C). Si determinino la potenza termica stazionaria trasmessa attraverso la finestra e la temperatura della superficie interna della finestra in un giorno durante il quale lambiente interno è mantenuto a 20 °C mentre la temperatura esterna è di -10 °C. Si assumano quali coefficienti di scambio termico sulle superfici interna ed esterna della finestra h 1 = 10 W/(m 2 · °C) e h 2 = 40 W/(m 2 · °C), includendo in essi gli effetti della radiazione. Conducibilità termica finestra = 0,78 W/(m · °C) Coefficiente di scambio termico convettivo delle superficie interna h 1 = 10 W/(m· °C) Coefficiente di scambio termico convettivo delle superficie esterna h 2 = 40 W/(m· °C) T = 30 °C Spessore finestra L = 0,008 m Area finestra A = 1,2 m 2 ES. 5

11 Questo problema, che comprende la conduzione termica attraverso il vetro della finestra e la convezione termica in corrispondenza delle sue superfici esterna ed interna, può essere convenientemente trattato facendo uso del concetto di resistenza termica. Tenendo presente che le tre resistenze sono in serie, la resistenza termica totale risulta essere: La potenza termica stazionaria trasmessa attraverso la finestra è:

12 ES. 5 Conoscendo la potenza termica, la temperatura superficiale interna del vetro della finestra è:

13 Si consideri una finestra - alta 0,8 m e larga 1,5 m – costituita da due strati di vetro dello spessore di 4 mm [ = 0,78 W/(m· °C)] separati da unintercapedine di aria ferma spessa 10 mm [ = 0,026 W/(m· °C)]. Si determinino la potenza termica stazionaria trasmessa attraverso questa finestra a doppio vetro e la temperatura della sua superficie interna per un giorno durante il quale la differenza di temperatura fra esterno ed interno sia di 30 °C. Si assumano quali coefficienti di scambio termico sulle superfici interna ed esterna della finestra h1 = 10 W/(m2· °C) e h2 = 40 W/(m2· °C), includendo in essi gli effetti della radiazione. Conducibilità termica vetro l 1 = 0,78 W/(m · °C) Conducibilità termica aria ferma l 2 = 0,026 W/(m · °C) Coefficiente di scambio termico convettivo delle superficie interna h 1 = 10 W/(m· °C) Coefficiente di scambio termico convettivo delle superficie esterna h 2 = 40 W/(m· °C) D T = 30 °C Spessore vetro L 1 = 0,004 m; spessore aria ferma L 2 = 0,01 m Area finestra A = 1,2 m 2 ES. 6

14 La resistenza termica comprenderà in questo caso due resistenze conduttive addizionali corrispondenti a due strati addizionali. Tenendo presente che le tre resistenze sono in serie, la resistenza termica totale risulta essere: La potenza termica stazionaria trasmessa attraverso la finestra è quindi:

15 ES. 6 Confrontando il risultato con lesercizio precedente si spiega il largo uso di finestre a doppio e triplo vetro nei climi freddi. La riduzione di potenza termica trasmessa è dovuta allelevata resistenza termica dello strato daria tra i vetri. In realtà, la resistenza termica dello strato daria è minore di quella ipotizzata a causa delle correnti convettive naturali che si hanno nellintercapedine daria. La temperatura superficiale interna della finestra sarà in questo caso:


Scaricare ppt "ES. 1 Calcolare la potenza termica dispersa per conduzione, causata dal calore che si disperde dallinterno di un edificio, attraverso una parete di gesso."

Presentazioni simili


Annunci Google