La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Obiettivi Conoscere il significato di movimento rigido, trasformazione geometrica, simmetria assiale e centrale; Riconoscere figure simmetriche rispetto.

Presentazioni simili


Presentazione sul tema: "Obiettivi Conoscere il significato di movimento rigido, trasformazione geometrica, simmetria assiale e centrale; Riconoscere figure simmetriche rispetto."— Transcript della presentazione:

1 Obiettivi Conoscere il significato di movimento rigido, trasformazione geometrica, simmetria assiale e centrale; Riconoscere figure simmetriche rispetto ad un asse o ad un centro di simmetria; saper riconoscere simmetrie nelle figure piane e in alcuni semplici solidi; Disegnare la figura simmetrica di una data rispetto ad un asse o ad un centro; Conoscere le proprietà delle simmetria assiale e quelle della simmetria centrale; Saper comporre le simmetrie; La simmetria in Matematica

2 Fase operativa: tagliare, piegare, osservare Costruire figure simmetriche rispetto ad un asse, con la piegatura della carta e uno spillo

3 Fase operativa Disegnare figure simmetriche con riga e compasso Data una figura F e un asse r, costruire la figura F simmetrica di F rispetto ad r

4 Osservazione, analisi e verifica con luso del software

5 Composizione di Simmetrie Assiali (Riflessioni) Secondo assi paralleliTraslazione Secondo assi trasversaliRotazione Secondo assi ortogonali Simmetria centrale

6 Costruiamo una girandola… Simmetria Radiale Simmetria Centrale

7 Verifica Conoscenze 1.Indicare se le seguenti affermazioni sono vere o false: AffermazioneVF Due punti che si corrispondono in una simmetria assiale stanno da parti opposte rispetto all asse di simmetria Se due punti sono simmetrici, la loro distanza dallasse di simmetria è uguale La simmetria assiale non conserva lampiezza degli angoli La simmetria assiale cambia la forma delle figure La simmetria assiale cambia sempre la posizione di una figura nel piano La simmetria assiale non cambia lordine dei punti di una figura In una simmetria centrale i punti corrispondenti sono allineati con il centro di simmetria La simmetria centrale è un caso particolare di simmetria assiale Una simmetria centrale di centro O corrisponde ad una rotazione di 180° attorno ad O In una simmetria centrale non vi sono punti uniti

8 2. Completare le seguenti affermazioni o rispondere alle domande: Una simmetria assiale potrebbe essere identificata da………………………………………………… Segmenti che uniscono punti corrispondenti sono ……………………… all asse di simmetria Punti corrispondenti sono ………………………………….. dall asse di simmetria Segmenti che uniscono punti corrispondenti in una simmetria centrale di centro O passano ………………………………………………………………………………………………………………… Il solo punto unito in una simmetria centrale di centro O è…………………………………………….. I quadrilateri che hanno un centro di simmetria sono ………………………………………………….. Cosa significa che una simmetria assiale è una isometria inversa? Cosa significa che una simmetria centrale è una isometria diretta? Il centro di simmetria esiste in un segmento? Che cosè? Capacità 1.Costruire le figure corrispondenti in una simmetria assiale di asse r, indicando la procedura nel disegno r r 2.Disegnare una linea retta e le figure simmetriche rispetto a questa di un trapezio rettangolo. r

9 3.Le seguenti figure sono stare ottenute una dallaltra attraverso luso di una simmetria assiale. Individuarne lasse di simmetria. 5.Trovare il centro di simmetria nei due casi seguenti: 4.Vedere se le figure sulla sinistra si corrispondono in una simmetria assiale; se si, disegnare lasse di simmetria.

10 6.Nella simmetria centrale di centro O, disegnare le corrispondenti delle seguenti figure: 7.Verificare se il punto O indicato in ogni figura a sinistra è il rispettivo centro di simmetria:


Scaricare ppt "Obiettivi Conoscere il significato di movimento rigido, trasformazione geometrica, simmetria assiale e centrale; Riconoscere figure simmetriche rispetto."

Presentazioni simili


Annunci Google