La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Un percorso accidentato tra numeri, operazioni e strumenti di calcolo.

Presentazioni simili


Presentazione sul tema: "Un percorso accidentato tra numeri, operazioni e strumenti di calcolo."— Transcript della presentazione:

1 Un percorso accidentato tra numeri, operazioni e strumenti di calcolo

2

3 Usando i dadi viene estratto un numero-bersaglio di 3 cifre. Le cifre sono in ordine e una stessa cifra può comparire due volte. Poi si estraggono, sempre casualmente, le tre cifre di partenza (questa volta devono essere diverse!) e due operazioni.

4 Arrivare nel tempo stabilito di 5 minuti, più vicino possibile al numero bersaglio, combinando a piacere cifre e operazioni Cifre e operazioni possono essere utilizzate più volte Le cifre iniziali possono essere combinate fra loro, ma non con i risultati

5 Dalla terza classe della scuola elementare Con gruppi di lavoro omogenei Calcolando alternativamente a mano e con la calcolatrice

6 Per ogni sequenza corretta (nessun errore nei calcoli) 1 punto Per ogni sequenza sbagliata o non valida –1 Per il mancato svolgimento –2 Al gruppo che centra il bersaglio vengono assegnati 5 punti Se nessuno fa centro, la risposta più vicina al numero-bersaglio vale 3 punti Bonus di 1 punto a chi usa tutte le cifre estratte e tutti i simboli di operazione Bonus di 2 punti a chi individua la strada più breve Bonus di 1 punto a chi finisce per primo Il punteggio massimo che può essere conseguito è di 10 punti. Per ogni sequenza corretta (nessun errore nei calcoli) 1 punto Per ogni sequenza sbagliata o non valida –1 Per il mancato svolgimento –2 Al gruppo che centra il bersaglio vengono assegnati 5 punti Se nessuno fa centro, la risposta più vicina al numero-bersaglio vale 3 punti Bonus di 1 punto a chi usa tutte le cifre estratte e tutti i simboli di operazione Bonus di 2 punti a chi individua la strada più breve Bonus di 1 punto a chi finisce per primo Il punteggio massimo che può essere conseguito è di 10 punti.

7 Numero bersaglio: 543 Cifre: 2, 6, 9 Simboli di operazione: - x Sequenza operativa che centra il bersaglio 6 x 2 = x 6 = x 9 = – 96 = – 9 = 543 Un esempio

8 Numero bersaglio: 191 Cifre: 2, 3, 8 Simboli di operazione: + x Non vale combinare le cifre iniziali con un risultato 2 x 3 x 3 = = 191 Non vale usare operazioni non estratte 382 : 2 = 191 Cosa NON è valido?

9

10

11

12 Il seguente numerando è stato effettuato in una 5^ elementare ed ha offerto spunti interessanti sulla divisibilità e sul calcolo mentale. Numero bersaglio: 233 Cifre: 2, 4, 8 operazione : e x

13 Il sei gruppi di alunni hanno fornito le seguenti soluzioni Gruppo 128x 4 = x 2 = 224 Gruppo 242 x 8 = : 2 =168 Gruppo 3 Gruppo 4 Gruppo 5 44 x 4 = x 4 = : 8 = 88 88x 4 = : 2 = x 8 = : 4 = x 4 =192 28x 4 = x 2 = : 8 = x 2 = 210 Numero bersaglio: 233 Cifre: 2, 4, 8 operazione : e x

14 Poiché non cè stato tempo di esaminare i risultati con i bambini di 5^, ho provato a sottoporre il loro lavoro agli alunni della classe 1^E, suddivisi a loro volta in 6 gruppi di 3 alunni ciascuno, però questa volta secondo un criterio di omogeneità interna ( 2 gruppi di livello alto, 2 di livello intermedio e 2 di livello basso) La consegna è stata la seguente: Esaminate i risultati del seguente numerando effettuato in una 5^ elementare. Se foste linsegnante che cosa fareste osservare agli alunni? Quali indicazioni dareste per aiutarli a fare meglio?

15 La consegna è risultata piuttosto oscura, perché il primo impulso è stato quello di cimentarsi con il gioco per cercare di fare meglio (ma senza successo). In effetti, le risposte date in questa prima fase hanno un po disatteso le aspettative, ma sono state comunque sufficienti per spostare lattenzione degli alunni sulle relazioni intercorrenti tra le cifre e tra le operazioni

16 Ecco una sintesi delle risposte Consiglio di fare più tentativi in modo da avere più possibilità Se fossi linsegnante osserverei le operazioni degli alunni: chi cè arrivato più vicino, chi ha usato il bonus e chi cè andato più lontano Gli farei notare che nessuno ha centrato il bersaglio e quelli che si sono avvicinati di più hanno usato un solo segno, il x, e le stesse operazioni.

17 E molto difficile raggiungere un bersaglio dispari con tutte le cifre pari e i segni : e x Si può arrivare a 224 con una sola operazione, invece che con 2 come hanno fatto G1 e G5; basta fare 28 x 8 = 224 Per centrare il bersaglio bisognerebbe arrivare al numero 466 e poi dividere per 2

18 Una volta rilevata linutilità delle prime osservazioni (tutti sanno di non aver centrato il bersaglio e anche che consigliare di fare più tentativi non aiuta) abbiamo concordato che i suggerimenti dellinsegnante dovrebbero produrre qualcosa di interessante, ad esempio potrebbero indirizzare verso una scoperta significativa, come abbiamo sperimentato in altre occasioni. A questo punto ho chiesto di spiegare lultima osservazione, che è stata la più adeguata ed è stata data da uno dei due gruppi di livello più basso. La cosa ha destato il disappunto dei bravi, inorgoglito i ritardatari, ma, soprattutto, motivato lintera classe a guardare il compito con occhi diversi.

19 Come auspicato, dopo una discussione generale, sono arrivate tutte insieme le risposte cercate: Moltiplicare per 8 e poi dividere per 4 è lo stesso che moltiplicare per 2 (v. G4) Dividere per 4 e poi moltiplicare per 4 fa rimanere al punto di partenza, perché …(è stato necessario pensarci) moltiplicazione e divisione sono una linverso dellaltra (v.G4) Moltiplicare per 8 e poi dividere per 2 è come moltiplicare per 4, viene fuori da 8 : 2! (v.G2)

20 Moltiplicare tre volte per 4 è come moltiplicare per 64 (4 ³ !) e, dividere per 8 e poi per 2 è come dividere per 16; ma allora moltiplicare per 64 e dividere per 16 è lo stesso che moltiplicare per 4, lo dimostra il fatto che alla fine si ottiene lo stesso risultato della prima operazione (v.G3) 2 è 2 ¹, 4 è 2² e 8 è 2³ una sta dentro laltra

21 Dal Numerando alle espressioni BERSAGLIO:272 CIFRE: 2, 4, 9 OPERAZIONI: + x

22 Soluzione di un alunno: 94 x 2 = = = 272 La trasformazione di tale sequenza in espressione è stata immediata: 94 x = 272 Soluzione di un alunno: 94 x 2 = = = 272 La trasformazione di tale sequenza in espressione è stata immediata: 94 x = 272

23 E possibile scrivere lespressione in modo diverso? Arriva puntuale la risposta attesa: 94 x x 2 = 272

24 E possibile fare un ulteriore trasformazione inserendo le parentesi tonde? Gabriele propone ( ) x 4 Mattia corregge ( ) x 2

25 Operazioni a confronto Bersaglio 381 Cifre 6, 1, 4 Operazioni x :

26 Unica soluzione trovata 64 x 6= : 1= 384 Ora che conoscete meglio le operazioni aritmetiche e avete imparato a ricavare informazioni su un numero dalla sua fattorizzazione, provate a spiegare perché risulta difficile centrare questo Numerando

27 Se provassimo a lasciare invariati bersaglio e cifre e cambiassimo la combinazione delle operazioni? Sarebbe ugualmente difficile centrare il bersaglio?

28 – = x 61 x = : 1164 : = x 66 x 6 –14 –1 = : 461 – 66 –14 : 1 = 381

29 BERSAGLIO:343 CIFRE: 3, 6, 9 OPERAZIONI: - : E se partissimo da lontano?

30 Alcune soluzioni 696 –333 = – 33 = – 9 = – 9 = –9 = – 9 = – 6 = – 6 = – 3 = – 3 = 342 Cifre: 3, 6, 9 Operazioni - : 3699 : 9 = – 69 = – 9 = : 33 = – 699 = – 69 = 343

31 INDAGINE SUL COMPORTAMENTO DEI NUMERI PARI E DEI DISPARI La classe sta cercando la soluzione a un Numerando che due mesi prima era risultato piuttosto difficile: 4 gruppi su 6 non erano riusciti neanche ad avvicinarsi al bersaglio, nonostante avessero a disposizione la calcolatrice. La classe sta cercando la soluzione a un Numerando che due mesi prima era risultato piuttosto difficile: 4 gruppi su 6 non erano riusciti neanche ad avvicinarsi al bersaglio, nonostante avessero a disposizione la calcolatrice.

32 BERSAGLIO:582 CIFRE: 9, 1, 3 OPERAZIONI: - x

33 Gli alunni non si sono resi conto di averlo già affrontato e pensano che provenga da unaltra classe; sospettano che nasconda qualche insidia e, durante la dettatura, Andrea commenta sottovoce: Questo è difficile, non può tornare, le cifre sono tutte dispari e il bersaglio è pari. Non raccolgo sul momento la frase, ma la pongo allattenzione della classe la lezione seguente. Tutti i gruppi, questa volta, hanno centrato il bersaglio (ciò significa che due mesi di pratica, hanno prodotto qualche risultato positivo) ed è a tutti evidente che laffermazione di Andrea è falsa. Qualcuno, però, obietta che se, tra le operazioni, ci fosse stata la divisione, laffermazione di Andrea sarebbe stata vera. Diventa, quindi, necessaria unindagine approfondita sul comportamento dei numeri pari e dispari nelle operazioni aritmetiche. Forse tale comportamento era già conosciuto nel caso delle due operazioni dirette ( + e x ), perché è stato facile arrivare alle seguenti tabelle, ma è stato più difficile ragionare sulle operazioni inverse. Gli alunni non si sono resi conto di averlo già affrontato e pensano che provenga da unaltra classe; sospettano che nasconda qualche insidia e, durante la dettatura, Andrea commenta sottovoce: Questo è difficile, non può tornare, le cifre sono tutte dispari e il bersaglio è pari. Non raccolgo sul momento la frase, ma la pongo allattenzione della classe la lezione seguente. Tutti i gruppi, questa volta, hanno centrato il bersaglio (ciò significa che due mesi di pratica, hanno prodotto qualche risultato positivo) ed è a tutti evidente che laffermazione di Andrea è falsa. Qualcuno, però, obietta che se, tra le operazioni, ci fosse stata la divisione, laffermazione di Andrea sarebbe stata vera. Diventa, quindi, necessaria unindagine approfondita sul comportamento dei numeri pari e dispari nelle operazioni aritmetiche. Forse tale comportamento era già conosciuto nel caso delle due operazioni dirette ( + e x ), perché è stato facile arrivare alle seguenti tabelle, ma è stato più difficile ragionare sulle operazioni inverse.

34 +PD PPD DDP XPD PP P DPD

35 Si nota che, se si fa una sottrazione tra due numeri dispari, si ottiene un numero pari ( = – 333 = 598 ) e che la tabella delladdizione può valere anche per la sottrazione, nei casi in cui questa (in N) è possibile. Lanalisi della seguente sequenza, che si ottiene togliendo in successione numeri dispari (ma si osserva la medesima situazione anche aggiungendo…..) aiuta i ragazzi a capire:

36 931 – 333 = – 9 = – 3 = – 3 = – 1 = 582 Ottenere un risultato P o D dipende dal numero di volte che si toglie il numero dispari: se sottraggo da P un numero pari di volte un numero dispari ottengo un numero P se sottraggo da P un numero dispari di volte un numero dispari ottengo un numero D 931 – 333 = – 9 = – 3 = – 3 = – 1 = 582 Ottenere un risultato P o D dipende dal numero di volte che si toglie il numero dispari: se sottraggo da P un numero pari di volte un numero dispari ottengo un numero P se sottraggo da P un numero dispari di volte un numero dispari ottengo un numero D

37 E con la divisione che cosa accade? Interviene Gabriele: Con le cifre pari non si può arrivare a un bersaglio dispari e poiché Gabriele ha più credibilità di Andrea, sono tutti propensi a sottoscrivere la sua affermazione. Ma basta chiedere di dare qualche esempio, per accorgersi che le cose non vanno proprio così: La divisione tra due numeri uguali, pari o dispari che siano, dà sempre 1 (nessuno fa riferimento a 0 : 0) 6 : 2 = 3 36 : 4 = 9 36 : 6 = 6 Loperazione P : P, purché il dividendo sia multiplo del divisore, può dare P o D a seconda dei casi! P: D = x con Dx = P, quindi, se x esiste, è pari; mentre non esiste alcun numero che, moltiplicato per un pari dia come risultato un dispari. E con la divisione che cosa accade? Interviene Gabriele: Con le cifre pari non si può arrivare a un bersaglio dispari e poiché Gabriele ha più credibilità di Andrea, sono tutti propensi a sottoscrivere la sua affermazione. Ma basta chiedere di dare qualche esempio, per accorgersi che le cose non vanno proprio così: La divisione tra due numeri uguali, pari o dispari che siano, dà sempre 1 (nessuno fa riferimento a 0 : 0) 6 : 2 = 3 36 : 4 = 9 36 : 6 = 6 Loperazione P : P, purché il dividendo sia multiplo del divisore, può dare P o D a seconda dei casi! P: D = x con Dx = P, quindi, se x esiste, è pari; mentre non esiste alcun numero che, moltiplicato per un pari dia come risultato un dispari.


Scaricare ppt "Un percorso accidentato tra numeri, operazioni e strumenti di calcolo."

Presentazioni simili


Annunci Google