La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

ELABORAZIONE NUMERICA DEI SEGNALI AA. 2009-2010 conversione A/D Francesca Gasparini

Presentazioni simili


Presentazione sul tema: "ELABORAZIONE NUMERICA DEI SEGNALI AA. 2009-2010 conversione A/D Francesca Gasparini"— Transcript della presentazione:

1 ELABORAZIONE NUMERICA DEI SEGNALI AA conversione A/D Francesca Gasparini

2 conversione A/D Campionamento: genera a partire da un segnale analogico un segnale a tempo discreto. I segnali a tempo discreto possono essere riconvertiti in segnali analogici attraverso unoperazione detta interpolazione. Quantizzazione: i segnali a tempo discreto sono convertiti in segnali a tempo e a valore discreto. Ciascuno di questi valori appartiene ad un set limitato di possibili valori. Segnale digitale. Codifica: ciascun valore quantizzato è espresso attraverso ad una sequenza binaria di b-bit.

3 conversione A/D D/A Loperazione che permette di ricostruire il segnale analogico x(t) a partire dalla sequenza x(nT c ) è detta ricostruzione. La ricostruzione fedele è possibile solo se: non cè quantizzazione il campionamento è avvenuto nel rispetto del teorema di Shannon. Nei convertitori digitale/analogico i punti del segnale digitale vengono interpolati per generare il segnale analogico ricostruito. Laccuratezza della ricostruzione dipende dalla qualità del processo di conversione A/D.

4 conversione A/D D/A Quindi per effetto dellerrore di quantizzazione (anche se il campionamento è ideale), collegando in cascata un A/D e un D/A risulterà in generale: x r (t) x(t) La conversione D/A può invertire solo loperazione di campionamento: interpolazione. La quantizzazione è irreversibile e pertanto non può essere invertita.

5 Ricostruzione del segnale: Campionamento ideale

6 Campionamento ideale II campionamento ideale si formalizza attraverso limpiego della funzione impulso: lestrazione di una sequenza di campioni equivale alla moltiplicazione del segnale analogico per un treno d(t) di funzioni impulso (t). F c =1/T c

7 Un segnale campionato x(n) è descritto come combinazione lineare pesata di impulsi (treno di impulsi d(t)) posizionati negli istanti temporali nT c. I pesi della combinazione lineare sono dati dai valori assunti dalla funzione analogica x a (t) nei punti campionati nT c. Campionamento ideale

8 Lo spettro del segnale campionato è la somma di infinite repliche dello spettro del segnale analogico traslate di multipli interi di f c. Se il segnale X(f) è a banda limitata -B = 2B, il segnale è ricostruibile. B è la frequenza massima, 2B è la frequenza di Nyquist. Campionamento ideale: Spettro il segnale è ricostruibile: significa che è possibile interpolare il segnale campionato per otttenere il segnale originale.

9 Campionamento ideale: Campionamento ideale: Conversione D/A Interpolare un segnale a tempo discreto significa ricostruire landamento del segnale tra due campioni consecutivi spaziati di T c (periodo o passo di campionamento) Interpolatore ideale restituisce un segnale continuo che passa dai campioni di x[n]. Un simile interpolatore risulta però impossibile da realizzare fisicamente. Le interpolazioni più comuni (approssimate) sono le interpolazioni polinomiali a tratti: Polinomio di ordine zero (mantenitore) Lineare Polinomi di ordine superiore Spline (cubica)

10 -f c /2 f c /2 H(f) Interpolatore ideale Dal teorema del campionamento abbiamo allora quale funzione nel dominio spazio (tempo) è linterpolatore ideale. se il teorema del campionamento è soddisfatto basta isolare una replica, (in particolare quella centrata sullo zero), per ricostruire il segnale. si fa moltiplicando lintero spettro per una funzione finestra.

11 ricostruzione segnale Per teorema della convoluzione: Ad una moltiplicazione nel dominio delle frequenze corrisponde una convoluzione nel dominio diretto. La trasformata di una finestra è un sinc. -f c /2 f c /2 H(f)

12 ricostruzione del segnale La ricostruzione avviene allora attraverso la convoluzione: Un simile filtro risulta però impossibile da realizzare fisicamente. Coinvolge infinite repliche della funzione g traslata e pesata dai campioni della sequenza.Servono infatti infiniti campioni prima e dopo listante in cui si vuole interpolare. Ha quindi validità puramente teorica. :

13 Mantenitore Un semplice interpolatore è il mantenitore di ordine zero o approssimazione staircase. Il valore del segnale si mantiene costante fino al campione successivo Questa approssimazione del segnale analogico produce un effetto scalettatura che può essere mitigato smussando il segnale (filtraggio passabasso).

14 Mantenitore

15 Interpolatore lineare Migliora linterpolazione rispetti al mantenitore perchè ricostruisce un andamento lineare tra due campioni consecutivi. Richiede la conoscenza di due campioni consecutivi del segnale e quindi introduce un ritardo di elaborazione.

16 Ricostruzione del segnale: Campionamento reale

17 Due effetti contribuiscono alla distorsione del segnale ricostruibile: 1. Raramente il segnale ha banda limitata abbiamo quindi sempre a che fare con laliasing o ripiegamento dello spettro campionamento reale 2. Tempo di campionamento non è istantaneo : il campionamento ideale si formalizza attraverso limpiego della funzione impulso. Nella realtà può essere approssimato da funzioni tipo gradino di durata inferiore rispetto al passo di campionamento T.

18 1. osservazioni sul teorema del campionamento il Teorema del campionamento è applicabile solo quando lo spettro del segnale ha banda limitata (ha supporto compatto) -succede raramente-. se un segnale ha spettro con supporto illimitato non è possibile trovare la frequenza di campionamento che soddisfi il teorema di campionamento. è possibile pensare di limitare la banda con un filtraggio passabasso: FILTRO ANTIALIASING.

19 Segnale campionato con aliasing

20 Ricostruzione segnale con aliasing

21 Filtro antialiasing Sinusoide a 1 Hz affetta da rumore a 60 Hz, con fc=28 Hz

22 Il filtro di antialiasing limita la banda del segnale in modo da ridurre la distorsione spettrale. Limitando la banda dello spettro, lo spettro stesso si modifica ed il segnale ricostruito non può corrispondere al segnale originale. 1. FILTRO ANTIALIASING -B B H(f) Il filtro antialias ideale è una finestra nel dominio delle frequenze con larghezza tale da eliminare i contributi di frequenza fuori da un intervallo finito [-B B].

23 1 FILTRO ANTIALIASING B si sceglie ad es. perché il segnale filtrato x 1 (t) contenga il 99% dellenergia del segnale originale x(t). Come si fa? relazione di parseval: spettro del segnale x(t) filtrato con un filtro ideale di banda 2B

24 il fatto che il filtro passa basso non sia ideale implica che una porzione di segnale rimanga sempre oltre B (f c /2) e cioè che i contributi delle repliche per k 0 nella banda del segnale utile non siano del tutto nulli. 1 FILTRO ANTIALIASING

25 1 FILTRO ANTIALIASING: distorsione introdotta Energia del segnale nella banda utile Energia della distorsione SNR = (Potenza del segnale/Potenza della distorsione)=E segnale /E distorsione =S/D SNR dB=10 log 10 (S/D) Quantifichiamo la distorsione introdotta dallaliasing:

26 La delta di Dirac del campionatore ideale è sostituita da funzioni tipo gradino di durata t d inferiore rispetto al passo di campionamento Tc Il segnale campionato è allora il prodotto del segnale analogico per una sequenza di funzioni rettangolo. 2. tempo di campionamento Nella realtà un circuito campionatore è costituito da un interruttore che si apre e si chiude con cadenza regolare T, estraendo un campione x(n) ogni volta che si chiude. Il tempo di chiusura è non nullo e pari a.

27 Per il teorema della convoluzione, il prodotto nel dominio del tempo corrisponde ad una convoluzione degli spettri. Il campionamento di un segnale mediante un impulso di durata non nulla può essere allora trattato nel dominio delle frequenze come lo spettro del campionamento ideale del segnale filtrato dallo spettro dellimpulso di campionamento, (P(f)=sinc( f )). 2. tempo di campionamento *

28 Contrariamente al caso del campionamento ideale, lo spettro X (f) non é periodico. Ciononostante, rispettando il teorema del campionamento, é possibile ricostruire il segnale x(t). Il campionamento reale produce effetti reversibili sul segnale campionato: è possibile ricostruire perfettamente il segnale di partenza attraverso un filtraggio ideale analogo a quello impiegato nel caso di campionamento ideale, moltiplicato per unopportuna costante che tiene conto dellattenuazione subita. 2. tempo di campionamento

29 campionamento con Sample and Hold I dispositivi elettronici che elaborano il segnale campionato esigono spesso che i campioni in ingresso vengano mantenuti costanti: operazione di campionamento e mantenimento (Sample and Hold SH)

30 equivale ad una cascata di campionamento ideale e di un sistema che mantiene costante il valore: sistema con risposta allimpulso pari ad un rettangolo. x(t) d(t) treno di delta x(nT c ) 1 TcTc t x SH (t) campionamento con Sample and Hold

31 Il segnale è distorto in frequenza dallo spettro del sistema di mantenimento. (Convoluzione con un sinc) Il segnale non è ricostruibile semplicemente con un filtraggio passa basso ideale. E necessario utilizzare un filtro opportuno per compensare la distorsione. campionamento con Sample and Hold

32 Loperazione che permette di ricostruire il segnale a partire dalla sequenza x(nT c ) avviene attraverso linterpolazione. (Caso più semplice mantenitore di ordine zero) La ricostruzione fedele può avvenire solo se il segnale è campionato rispettando il teorema del campionamento. 1.campionamento ideale di segnale a banda limitata La ricostruzione avviene in condizioni di campionamento ideale moltiplicando lo spettro per un rettangolo (filtraggio ideale) che ne evidenzi una sola replica. Equivale a filtrare nel dominio del tempo per una funzione sinc. (interpolatore ideale: sinc) 2.campionamento reale o sample and hold: La ricostruzione in caso di campionamento reale, avviene filtrando con un opportuno filtro che annulli la distorsione introdotta. ricostruzione del segnale

33 QUANTIZZAZIONE la quantizzazione è loperazione tramite la quale un campione reale che necessita ipoteticamente di un numero infinito di bit per essere rappresentato, è espresso su un numero finito di bit: RISOLUZIONE

34 E un processo di discretizzazione di ampiezza. Luscita del quantizzatore è una versione compressa dellinput, con perdita di informazione. Operazione irreversibile Curva non lineare (a gradini) caratteristica di un quantizzatore Per tutti i valori di input che appartengono ad uno degli intervalli su cui sono definiti i gradini, loutput assume il valore del gradino corrispondente (discretizzazione dellinput). QUANTIZZAZIONE

35 QUANTIZZAZIONE UNIFORME La dinamica [-V V] che contiene il segnale viene suddivisa uniformemente in un numero di sottointervalli L=2 n. n è la risoluzione. Ogni intervallo ha ampiezza =2V/L ( passo di quantizzazione). Il quantizzatore è uniforme se tutti i livelli sono ugualmente distribuiti rispetto allasse delle ascisse (valori di input). Il processo di quantizzazione consiste nellassociare a ciascun campione x(m) il numero binario su n bit x q (m), corrispondente al livello quantizzato dellintervallo in cui cade x(m) secondo quanto indicato dalla relazione ingresso uscita del tipo in figura.

36 campionamento quantizzazione

37 SATURAZIONE Un quantizzatore è caratterizzato da una dinamica di ingresso: massimo range di valori ammissibili ad es. [–V V]. Se il segnale di ingresso supera questi valori estremi, il segnale viene modificato attraverso unoperazione di saturazione, o saturazione con azzeramento prima delloperazione di quantizzazione V -V V V V saturazionesaturazione con azzeramento

38 Il range dinamico di un segnale è definito come la sua escursione massima D=[Val max -Val min ]. Il segnale è campionato e poi quantizzato su L livelli il passo di quantizzazione =D/L Il range dinamico (in dB) di un quantizzatore dipende dalla sua risoluzione e quindi da quanti livelli L ammette, ed è definito come: se la risoluzione è di 16 bit, L=2 16, il range dinamico è RANGE DINAMICO DI UN QUANTIZZATORE

39 ERRORE di QUANTIZZAZIONE si definisce errore di quantizzazione (o rumore di quantizzazione) la differenza fra il valore quantizzato ed il valore reale del campione

40 ERRORE di QUANTIZZAZIONE supponiamo di volere approssimare una funzione a valori reali tra 01 con una sola cifra decimale. es funzione x(t)=0.9 t nx(n)x q (n) troncato x q (n) approssimato

41 ERRORE di QUANTIZZAZIONE /2 approssimato troncato

42 Il processo di quantizzazione è irreversibile. Tuttavia un numero sufficientemente elevato di campioni permette di ridurre lerrore. la qualità del segnale quantizzato si esprime come rapporto della potenza media P S del segnale a tempo discreto x(n) e la potenza dellerrore di quantizzazione P N. ERRORE di QUANTIZZAZIONE

43 /2 approssimato per segnali con ampiezza nella dinamica del quantizzatore, lerrore di quantizzazione è una variabile casuale che ha una distribuzione uniforme tra - /2 e /2 con valor medio nullo - /2 /2 1/ f( ) densità di probabilità

44 rumore di quantizzazione - /2 /2 1/ f( ) densità di probabilità potenza del rumore di quantizzazione = varianza della variabie casuale

45 SNRq Dato un segnale sinusoidale analogico Definire un quantizzatore a b bit ottimo per quel segnale, e calcolare il SNRq. Cosa vuol dire ottimo? Significa che la dinamica del quantizzatore e quella del segnale sono uguali. Cioè il segnale sfrutta bene la dinamica del quantizzatore.

46 Range dinamico del segnale sinusoidale D=2*A Se quantizzatore ha b bit –il numero di livelli del quantizzatore è: L=2 b ; –il passo di quantizzazione è =D/L=2A/2 b Fissato è fissato P N Calcoliamo allora P S SNRq

47 si può dimostrare che per un segnale qualsiasi con distribuzione gaussiana che si distribuisce sullintero range dinamico del quantizzatore vale:

48 ad ogni bit aggiunto il rapporto segnale rumore cresce di circa 6dB. SNRq esercizio: dato un quantizzatore a 16 bit ed un segnale con dinamica che occupa lintero range del quantizzatore qual è il suo SNR Q

49 La quantizzazione provoca una perdita irreversibile di informazione, quindi il segnale di uscita manifesta una distorsione o errore di quantizzazione. E importante stabilire in quali condizioni la distorsione introdotta è minima. Maggiore è la risoluzione, numero di bit, più il segnale si avvicina al segnale originale, minore è la perdita di informazione Progetto ottimo del quantizzatore: consiste nella scelta del numero di livelli e nella determinazione dei rispettivi valori, che rendano minima la distorsione: cioè equivale a trovare la curva caratteristica ottima. QUANTIZZAZIONE

50 campionamento e quantizzazione sono due operazioni fra loro indipendenti in realtà campionare un segnale con una frequenza di campionamento superiore al limite imposto dal teorema del campionamento comporta un rapporto SNR Q | dB migliore. oppure, sovracampionando di un fattore N con frequenza di campionamento f c =Nf c si può ottenere pari SNR Q | dB riducendo però la risoluzione cioè il numero di bit del segnale. QUANTIZZAZIONE e SOVRACAMPIONAMENTO


Scaricare ppt "ELABORAZIONE NUMERICA DEI SEGNALI AA. 2009-2010 conversione A/D Francesca Gasparini"

Presentazioni simili


Annunci Google