La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

27 febbraio 2007 MISURE ED ERRORI

Presentazioni simili


Presentazione sul tema: "27 febbraio 2007 MISURE ED ERRORI"— Transcript della presentazione:

1 27 febbraio 2007 MISURE ED ERRORI Che tipo di errori costituiscono la misura, quali sono i parametri statistici per il loro trattamento, quale è la loro distribuzione normale.

2 Sensibilità e precisione degli strumenti di misura
sensibilità di uno strumento è la minima quantità di grandezza misurabile con lo strumento (ordine di grandezza). precisione di uno strumento è il rapporto tra la sensibilità dello strumento e la massima quantità di grandezza che lo strumento può misurare. La precisione è una grandezza adimensionale, tanto maggiore quanto minore è il numero che la esprime.

3 Natura PROBABILISTICA della misura
Il valore della “misura esatta” è teoricamente pensabile solo come valore più probabile della misurazione. Per la legge probabilistica “empirica del caso” il valore teoricamente esatto di una misura lo si approssima come il valore più frequente in una serie di misurazioni; tante più saranno tali misurazioni quanta più sarà la precisione della misura.

4 INCERTEZZA Ma da un numero limitato di prove si può solo ridurre statisticamente l’aleatorietà introducendo la nozione di precisione e di errore come due grandezze reciproche, inversamente proporzionali che misurano l’incertezza della misurazione o dello strumento.

5 f POPOLAZIONE di misure 1 2 3 6 7 8 5 4
L’insieme di misure omogenee di una stessa grandezza si possiamo distribuire in classi di equivalenza 1 ,2 ,3 , … n corrispondenti ai valori di data misura X i = (x1, x2, … xn.) che esprimono ciascuna quante misurazioni si possono riguardare entro una “stessa misura”. Queste classi indicano le. frequenze corrispondenti alle misurazioni x1, x2, … xn di una data misura X i. x 54-55 56-57 58-59 60-61 62-63 64-65 66-67 68-69 70-71 72-72 74-75 76-77 78-79 80-81 82-83 84-85 f 1 2 3 6 7 8 5 4

6 Prima nozione statistica: frequenza
Frequenza o frequenza assoluta (peso) di una modalità (misura) è il numero totale di volte che essa si presenta nelle unità rilevate

7 x1 .xi 54-55 56-57 58-59 60-61 62-63 64-65 66-67 68-69 70-71 72-72 74-75 76-77 78-79 80-81 82-83 84-85 f1 ..fi 1 2 3 6 7 8 5 4 In questo caso il continuum delle misure X i è stato discretizzato in intervalli di due unità ( ad esempio nella classe 2 sono comprese le misure da 55,5 a 57,5). Diciamo intuitivamente che al crescere dell’intervallo che definisce le classi diminuisce la precisione (come nel caso in cui si prelevassero le misure con una cordella metrica intervallata solo ogni mezzo centimetro piuttosto che con un nastro millimetrato) e cresce la difficoltà di leggere una “misura” attribuendola ad una classe. Perciò i numeri che esprimono le misure x1, x2, … xn sono solo dei simboli delle classi di equivalenza 1 ,2 ,3 , … n e non possiamo esprimere un intervallo con suoi limiti effettivi (55,5-57,5) perché una misura che cadesse sul limite (55,5) non sarebbe classificabile.

8 Media e misura probabile

9 MEDIA M è un indice significativo dell’insieme dei dati ed esprime la posizione sulla scala ordinata delle “misurazioni” di X (x1, x2, … xn ) verso la quale si addensa la “popolazione”. x 54-55 56-57 58-59 60-61 62-63 64-65 66-67 68-69 70-71 72-72 74-75 76-77 78-79 80-81 82-83 84-85 f 1 2 3 6 7 8 5 4

10 Misura PROBALILE di una grandezza
Ripetendo n volte la misura x di una grandezza si può dimostrare che se gli errori sono distribuiti del tutto casualmente (distribuzione normale) il valore più probabile della misura è la media aritmetica dei risultati delle misure: xm = (x1+x2+x3+...+xn)/n Valore medio della misura xm =

11 media aritmetica ponderata
Quando ciascuna modalità (misura) si presenta con una certa frequenza o peso, è più vantaggioso calcolare la media aritmetica considerando le frequenze): in tal caso si parla di media aritmetica ponderata perché ogni valore entra nella media con il suo peso, cioè la sua frequenza. La media aritmetica ponderata M di n valori è:

12 Scarto Scarto medio Scarto quadratico medio Varianza
Indici di dispersione Scarto Scarto medio Scarto quadratico medio Varianza

13 Seconda nozione statistica: la variabilità
Il calcolo della media ci permette di sintetizzare una quantità di dati, ma dall’altro riduce l’informazione racchiudendo tanti valori in un solo ‘dato’, rende simili situazioni che proprio simili non sono. Per ridurre la perdita di informazioni, si ricorre allo studio della variabilità del fenomeno.

14 Variabilità è la tendenza di un fenomeno ad assumere modalità (misure) diverse fra loro.

15 SCARTO Se la serie di misure indicano 37,2 cm. e l'utente,per un errore accidentale o sistematico, trascrive i seguenti quattro valori 37,1 poi 37,4 poi 37,0 poi 37,2 risulta che la media dei valori letti sarà una comune media aritmetica: ( )/4 =148.7 /4 =37.175, detto valore medio . Una volta ottenuto il valore medio, si può calcolare un altro valore, lo scarto. Lo scarto vi è calcolato sottraendo il nuovo risultato letto xi dal valore medio. Se a esempio una quinta misurazione fornisce il valore di 37.3 si avrà uno scarto di circa -0,2.

16 SCARTO MEDIO SCARTO è la differenza specifica tra ciascun valore x1, x2, … xn ed il valore M della media. Per misurare la variabilità si può dare uno SCARTO MEDIO inteso come la media della differenza specifica tra ciascun valore x1, x2, … xn ed il valore M della media. ovvero

17 SCARTO QUADRATICO MEDIO

18 VARIANZA È il quadrato dello scarto quadratico medio
è un indice di variabilità che misura quanto si disperdono i valori delle misure in rapporto al valore medio; è la differenza tra il valore quadratico medio ed il quadrato della media

19 La varianza La varianza è la media aritmetica degli scarti dalla media al quadrato, 2

20 Scarto quadratico medio 
Lo scarto quadratico medio (sqm)  o deviazione standard è la radice quadrata (positiva) della varianza.

21 TEORIA DELL’ERRORE Distribuzione normale degli errori Funzione di Gauss Teoria degli errori nel rilevamento

22 ERRORI grossolani – scarti macroscopici, dovuti ad imperizia e negligenza nel rilevamento sistematici – scarti sempre nello stesso senso (segno), dovuti a errata taratura dello strumento, individuabili confrontando le indicazioni dello strumento con quelle di un altro strumento tarato correttamente. accidentali – scarti agenti in maniera aleatoria che portano a deviazioni casuali in entrambe i sensi; sono dovuti a numerose circostanze, non sono identificabili individualmente ma solo statisticamente ripetendo più volte la misura della stessa grandezza.

23

24 MISURA & INCERTEZZA Ogni misura è sempre composta da: UN NUMERO
UNA UNITA’ DI MISURA E DAL VALORE DELL’INCETEZZA legata allo strumento, all’oggetto misurato o alle condizioni di misurazione. Il valore dell’INCERTEZZA - di una misura o di uno strumento – è valutato in un intervallo pari al doppio dell’errore probabile.

25

26 Distribuzione normale dell’errore accidentale: FREQUENZA
Eseguendo n misurazioni x di una grandezza si possono raggruppare i risultati in classi di frequenza 1 ,2 ,3 , … n che indicano il peso di probabilità di una certa misura e non sono necessarie nel caso di misure della stessa precisione. x 54-55 56-57 58-59 60-61 62-63 64-65 66-67 68-69 70-71 72-72 74-75 76-77 78-79 80-81 82-83 84-85 f 1 2 3 6 7 8 5 4

27 distribuzione probabilistica degli errori accidentali in una serie di misure di ugual precisione è tale che: 1 - esiste un limite entro il quale non vi sono più errori accidentali 2 – la probabilità che le misure siano approssimate in eccesso è uguale a quella che siano approssimate in difetto 3 – gli errori sono tanto più improbabili nella misura in cui crescono; ovvero saranno tanto più numerosi quanto più saranno piccoli.  La media aritmetica M dei valori letti in diversi momenti sulla stessa grandezza corrisponde al valore più probabile della misura

28 Disposizione simmetrica degli scarti
Eseguendo un sempre maggiore numero di misurazioni, e misurandone un sempre maggiore numero di scarti dal valore medio si constata una Legge di simmetria: in valore assoluto gli scarti si equivalgono, cioè non esiste una tendenza degli scarti accidentali a superare o difettare dal valore medio.

29 Disposizione decrescente degli scarti
La frequenza degli scarti aumenta con il rimpicciolire del valore dello scarto stesso, poiché è molto più probabile commettere un errore minuscolo piuttosto che un errore elevato. Ad esempio nel prelievo di una misura diretta è più probabile sbagliare accidentalmente di un centimetro che di un decimetro.

30 Dunque nel caso di misure ripetute di ugual precisione il valore medio costituisce la stima empirica del valore teorico della misura della grandezza. Tale valore sarà tanto più probabile quanto più aumenta il numero N delle misure. Rispetto a questo valore più probabile della misura gli scarti - le differenze specifiche tra ciascun valore x1, x2, … xn ed il valore M della media – costituiscono gli errori “veri” rispetto al valore più probabile della Misura: La somma algebrica di questi scarti dovrebbe essere sempre nulla

31 Scarto quadratico medio σ
ed è sempre minima la somma dei loro quadrati rispetto alla media. Questo principio detto dei minimi quadrati è fondamentale per la compensazione degli errori accidentali. Si considera la vera misura come dato più probabile rispetto al quale dunque è minima la somma dei quadrati di tutte le differenze fra le varie misure di una stessa grandezza. Scarto quadratico medio σ Errore quadratico medio 

32 ERRORE QUADRATICO MEDIO
Questo indice (detto scarto tipo o anche deviazione standard) esprime in media l’entità dell’errore entro il quale può oscillare il valore delle misurazioni. Indica quanto ogni misura mediamente si scosta dal valore teorico della grandezza osservata. Valuta la dispersione della media empirica intorno al valore della media teorica.

33 L’errore quadratico medio consente di valutare la precisione delle misurazioni.
Si dimostra che al crescere delle misurazioni i valore minori di  sono circa il 70% di quelli rilevati ovvero il valore di  ha una probabilità di 0,7 di non essere superato. Solo una misurazione su mille è affetta da scarti (errori) accidenetali che eccedono il triplo di .

34 Istogramma delle misure
Le misurazioni xi di una grandezza si rappresentino tra il più piccolo (xmin)e il più grande (xmax) dei valori misurati xi e si divida l'intervallo xmin, xmax in un certo numero di classi di frequenza, ciascuna di ampiezza Δx.

35 In ascissa si indica l’ordine crescente (decrescente) dei valori xi,
In ordinata si indica il valore della frequenza.

36 Il grafico rappresenta la distribuzione dei risultati delle misure, mostrando che la maggior parte dei risultati si addensa intorno al valor medio, mentre risultati che differiscono considerevolmente dalla media sono poco frequenti.

37 Distribuzione di Gauss
Si può dimostrare che quando gli errori sono distribuiti casualmente, facendo il limite per Δx -->0, e n --> ∞, cioè aumentando il numero delle osservazioni e riducendo l'ampiezza delle classi, l'istogramma precedente si trasforma in una curva continua chiamata gaussiana o curva di Gauss:

38 Frequenza delle misure
errore errore scarto

39

40 il parametro σ, chiamato deviazione standard, esprime la distanza orizzontale tra i punti di flesso e il massimo della curva (della funzione); rappresenta la dispersione dei risultati intorno al valore più probabile

41 Quanto maggiore è tale dispersione tanto più larga appare la curva.
Una curva molto allargata indica che l'effetto degli errori accidentali è notevole. Il significato statistico della curva di distribuzione è il seguente: presi due valori x1 e x2, l'area sottesa dalla curva nell'intervallo x1, x2 rappresenta la probabilità che il risultato di una misura sia compreso tra x1 e x2.

42 si può dimostrare che esiste
il 68.3 % di probabilità che il risultato della misura sia compreso nell'intervallo xo+σ, il 95.4 % che sia compreso nell'intervallo xo+2σ e il 99.7 % che si trovi in xo+3σ,

43 La deviazione standard può essere stimata dai risultati sperimentali usando la relazione: σ = ( (xi-xm)2/(n-1))1/2 in cui la sommatoria al numeratore rappresenta la somma dei quadrati degli scarti dalla media. Nota la deviazione standard è possibile calcolare l'errore della media, o errore standard, come: μ = σ/n1/2 che rappresenta la deviazione standard della media. Di conseguenza esiste il 68.3 % di probabilità che il valor vero sia contenuto nell'intervallo xm+μ, il 95.4 % che sia contenuto in xm+2μ e il 99.7 % che sia contenuto in xm+3μ. Assumendo come grado di fiducia il 95.4 % della probabilità, si può esprimere il risultato delle misure nella forma: x = xm+/-2μ

44 TOLLERANZA è dunque definita come il triplo dell’errore quadratico medio e costituisce l’ERRORE TEMIBILE in una misurazione, è il valore prefissato dell’incertezza. TOLLERANZA è dunque la maggiore tra le differenze ammissibili tra due misure della stessa grandezza in modo che possa essere assunta la media come valore più probabile della misura effettiva. Consente di valutare l’ERRORE RELATIVO all’UNITA’ DI MISURA in modo che si possa assumere una CORREZIONE automatica di segno contrario all’errore stesso.

45 COME SI DETERMINA LA TOLLERANZA IN UN RILIEVO?
In base alle caratteristiche del modello finale In base alle condizioni (strumenti e metodi) del rilevamento

46 LA PRECISIONE DEL MODELLO GEOMETRICO
Se il rilievo approda ad un modello grafico dell’oggetto rilevato il parametro fondamentale è l’errore di graficismo legato alla scala del disegno. Allorché nel progetto di rilievo si fissa una scala di restituzione si implica un margine d’errore ammissibile per rapporto allo scopo; solo da ciò consegue la scelta di strumenti e metodi di rilievo.

47 L’errore di graficismo nel disegno è valutato intorno ai 2 o 3 decimi di mm. assumendo conseguentemente un valore di tolleranza direttamente proporzionale alla diminuzione della scala (crescita del denominatore di scala) dai 3 cm. della scala 1:100 ai 60 cm. in scala 1:2000.  D’altronde la rilevazione delle lunghezze con strumenti diretti per rilievi in scala 1:50 non consente tuttavia di rispettare nemmeno l’errore di 1,5 cm. consentito dall’errore di graficismo…  La differenza tra errore di graficismo e tolleranza strumentale cresce in scala 1:20 sulle grandi estensioni,  mentre per rilievi in scala 1:100 la tolleranza strumentale è ampiamente contenuta nell’errore di graficismo.

48 MISURE DIRETTE

49 ERRORE QUADRATICO MEDIO NELLE MISURE DIRETTE
Distanza topografica è la misura della lunghezza del segmento che unisce la proiezione di due punti sulla superficie di riferimento. La misura diretta di una distanza L si compie riportando n volte una lunghezza campione al quale è connesso un errore quadratico medio  au noto dell’assommarsi delle esperienze.  au è riferito al metro o al chilometro.

50 ERRORE ACCIDENTALE NELLE MISURE DIRETTE
L’errore accidentale quadratico medio a L della misura diretta L di una distanza è proporzionale alla radice quadrata della distanza:

51 l’errore quadratico medio non è direttamente in proporzione al crescere della distanza ma della sua radice quadrata perché le compensazioni tra valutazioni per eccesso e per difetto avvengano automaticamente aumentando l’entità della misura.

52 ERRORE SISTEMATICO NELLE MISURE DEIRETTE
Invece gli errori dovuti alla taratura degli strumenti influenzano la lettura delle misure sempre nello stesso modo, direttamente proporzionale alla distanza da misurare. Per ogni condizione strumentale esiste un coefficiente di proporzionalità  su, cioè un errore quadratico sistematico unitario.

53

54 ERRORE TEMIBILE COMPLESSIVO NELLE MISURE DIRETTE
è la somma degli errori accidentali e sistematici. Dove L è la distanza da misurare, au è l’errore medio unitario accidentale,  su è l’errore medio unitario sistematico ricavati per via sperimentale.

55 TOLLERANZA NELLE MISURE DIRETTE
stabiliti p e q parametri costanti stabiliti sperimentalmente come il triplo degli errori quadrati medi, la TOLLERANZA t è

56

57 0,015 0,020 0.0008 0,025 p q Terreno pianeggiante Terreno ondulato
La tolleranza è stabilita da diversi sistemi di unificazione, il Catasto Italiano, dall’IGM, Ad esempio il Catasto Italiano stabilisce i seguenti valori di p e q: Terreno pianeggiante 0,015 Terreno ondulato 0,020 0.0008 Terreno sfavorevole 0,025 p q

58 G. Boaga, Introduzione al rilievo fotogrammetrico dei monumenti, Roma 1970.
Boaga fissa per il rilievo edilizio una Tolleranza compresa tra 0,45 e 1,45 mm per metro.

59


Scaricare ppt "27 febbraio 2007 MISURE ED ERRORI"

Presentazioni simili


Annunci Google