La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Corso di Fisica Generale Beniamino Ginatempo Dipartimento di Fisica – Università di Messina 1)Utilizzabilità dellEnergia 2)Reversibilità ed irreversibilità

Presentazioni simili


Presentazione sul tema: "Corso di Fisica Generale Beniamino Ginatempo Dipartimento di Fisica – Università di Messina 1)Utilizzabilità dellEnergia 2)Reversibilità ed irreversibilità"— Transcript della presentazione:

1

2 Corso di Fisica Generale Beniamino Ginatempo Dipartimento di Fisica – Università di Messina 1)Utilizzabilità dellEnergia 2)Reversibilità ed irreversibilità 3)II o Principio:Enunciati di Clausius e Kelvin 4)II o Principio:Entropia 5)Calcolo dellentropia 6)Entropia di una trasformazione adiabatica irreversibile 7)La macchina di Carnot 8)Teorema di Carnot 9)Temperatura assoluta 10)Altre trasformazioni cicliche: Stirling, Otto, Diesel 11)Teorema di Clausius 12)Potenziali termodinamici Parte XI: Il II o Principio della Termodinamica

3 Rendimento della transformazione = 50%, circa Minimo SPRECO di RISORSE Risorseinusabili Trasformiamo una data area disponibile (risorsa) in un parcheggio auto INOUT Il parcheggio 1

4 INOUT Rendimento della trasformazione < 50% SPRECO di RISORSE a causa del disordine (Aumento di Entropia) Risorseinusabili Risorsesprecate Il parcheggio 2

5 INOUT Rendimento della trasformazione = 0% Maximo SPRECO di RISORSE Tutte le risorse sono sprecate Il parcheggio 3

6 Commenti sul parcheggio Larea iniziale, la risorsa disponibile, non può essere creata né distrutta, ma raramente essa può essere utilizzata interamente Il restante 50% non è spreco, perché meglio non si poteva fare, ed è semplicemente risorsa spazio non usabile per parcheggiare In verità potremmo avere un sacco di spreco: lefficienza della trasformazione caoticamente si riduce se ognuno parcheggiasse caoticamente coordinati Al contrario, se i comportamenti individuali fossero coordinati, risorse comuniutilizzate al meglio allora le risorse comuni sarebbero utilizzate al meglio portare ordine Si noti anche che il lavoro di disegnare gli stalli aiuta a portare ordine nel parcheggio e che senza questo lavoro ci sarebbero risorse sprecate

7 Nelle trasformazioni di energia non è sempre possibile utilizzare tutta lenergia disponibile Ciò è ben illustrato dal Problema del Bravo Tipografo: Ritagliare un cartoncino di forma 100x70 cm 2 nel massimo numero di pezzi 40x30cm Questo è un problema di ottimizzazione, molto difficile da impostare ed ancor più da risolvere: minimizzare lo sfrido Utilizzabilità dellEnergia X X

8 Il tipografo ha fatto un ottimo lavoro, il migliore possibile date le circostanze: ha minimizzato lo sfrido È cruciale per la minimizzazione dello sfrido che i tagli siano assolutamente coordinati: p.es. se il primo taglio fosse il seguente non sarebbe più possibile ottenere cinque pezzi Ciò vuol dire che se il cartoncino fosse in un magazzino e differenti utenti andassero separatamente a prelevare un pezzo singolo, si potrebbe avere facilmente uno spreco di cartoncino se gli utenti non seguissero la regola di buon utilizzo, cioè di coordinazione, stabilita dal bravo tipografo Commenti sul Problema del Tipografo

9 Il cartoncino o larea di parcheggio rappresentano le risorse disponibili, cioè lenergia. Al momento del suo utilizzo però non è stato possibile sfruttare tutte le risorse disponibili. È quasi sempre così, perché solo in particolarissime circostanze è possibile utilizzare tutte le risorse Pensate, per esempio, al bilancio di una regione: ad ogni assessorato vengono assegnate delle risorse finanziarie che un buon assessore vorrà spendere interamente nellinteresse pubblico. Egli le utilizzerà in vari tronconi, di solito mediante gare dappalto. Ma alcuni lavori di grande utilità magari non si potranno effettuare perché i fondi non basteranno, specialmente se le risorse verranno spese in tanti piccoli/medi appalti NON COORDINATI fra loro. Alla fine dellanno ci saranno delle risorse non utilizzabili: i residui passivi dei bilanci. In tal caso lassessore non sarà stato un bravo tipografo.

10 Le risorse non più utilizzabili sono un danno. Se il bravo tipografo non è più in grado di riciclare il cartoncino di sfrido rimastogli (p.es. per fare dei biglietti da visita), lo butterà nel bidone della spazzatura, e da lì finirà magari in discarica o bruciato: contribuirà allinquinamento Questo avanzo di risorse non utilizzabili è un costo enorme per la società: si pensi che dietro allo smaltimento dei rifiuti ci sono 1)le cosidette ecomafie; 2)linquinamento delle falde acquifere a causa delle discariche; 3)linquinamento da diossina dellaria se si bruciano insieme carta e plastica; 4)etc.

11 Il pendolo di Osborne e il problema del tipografo hanno una chiave di interpretazione comune dal punto di vista dellutilizzo dellEnergia Il fatto che le singole particelle allinterno del corpo oscillante si muovano in maniera disordinata è il motivo per il quale il moto del corpo come un tutto si arresta. Se il taglio dei pezzi del cartoncino avviene in maniera disordinata, ci sarà molto sfrido Quindi, il disordine è la chiave di interpretazione Il disordine ovvero lassenza di regole osservate da tutti gli individui non consente lutilizzo di tutte le risorse disponibili, e di conseguenza crea un danno per il comportamento collettivo Il Pendolo di Osborne ed il problema del tipografo?

12 Una trasformazione termodinamica spontanea è irreversibile. Questo è il caso della miscela di acqua calda e fredda o del gas che si espande nellesperimento sulla energia interna del gas Una trasformazione reversibile è molto difficile da realizzare anche in laboratorio. È ovvio che in una trasformazione reversibile il sistema deve passare per tutti gli stati di equilibrio intermedi fra lo stato iniziale e finale, lungo lassegnata trasformazione Questa differenza fra reversibilità ed irreversibilità è una profonda differenza fra la Meccanica e la Termodinamica. La Meccanica è per definizione reversibile, perché le equazioni di Newton sono quadratiche nel tempo: non si può stabilire per mezzo delle equazioni della dinamica il verso del tempo GasVuoto T1T1 Setto GasVuoto T1T1 Gas T2T2 Reversibilità ed irreversibilità

13 Nel caso del pendolo di Osborne il moto delle particelle allinterno del cilindro segue certamente le leggi delle dinamica e certamente il moto delle particelle interne è reversibile e segue le leggi di Newton Tuttavia noi abbiamo visto che il moto del pendolo si smorza rapidamente, e non accade mai che il moto delle singole particelle sia coordinato in modo tale da far continuare le oscillazioni, né accade mai che una volta che il pendolo si sia fermato esso si rimetta spontaneamente in moto Supponiamo di aver ordinato un mazzo di carte per seme ed in ordine crescente, dallasso fino al re. Se ora lo lasciamo cadere per terra sarà estremamente improbabile che le carte raccolte siano nello stesso ordine di partenza Tuttavia noi possiamo filmare la caduta e proiettare il filmato allincontrario: vedremo ciascuna carta eseguire il suo moto in maniera assolutamente reversibile e ritornare alla sua posizione iniziale Ma questo non accade mai, così come è estremamente improbabile che se raccogliessimo le carte da terra queste si ricompongano nellordine iniziale

14 Ciò dipende dal fatto che le possibili permutazioni di 52 (o 40) carte sono ben 52! (40!) di conseguenza la probabilità che si realizzi di nuovo la configurazione ordinata di partenza è solo Si pensi che 52!= x10 67 (40!= x10 47 ) Un fatto analogo accadrebbe se avessimo in una scatola tante biglie bianche e nere, inizialmente completamente separate: se agitiamo la scatola le biglie si mescolano e per quanto proviamo sarà estremamente improbabile che le biglie ritornino nella configurazione iniziale Per ottenere la reversibilità del moto dobbiamo costringere (cambiando il segno di tutte le velocità) le particelle a muoversi tutte contemporaneamente allincontrario Simulazione delle reversibilità microscopica Ma nella realtà ciò non accade mai, quindi dobbiamo assumere un nuovo principio di fisica che fissi il verso del tempo: visto che lenergia si trasferisce dal moto macroscopico ai gradi di libertà microscopici e non allincontrario questo fissa la freccia del tempo

15 Storicamente ci furono due enunciati del tutto equivalenti formulati separatamente Clausius e Kelvin Enunciato di Clausius: È impossibile operare una trasformazione termodinamica il cui unico risultato consista nel passaggio di calore da un corpo a temperatura minore ad un corpo a temperatura maggiore Enunciato di Kelvin: È impossibile che in un processo ciclico venga trasformato in lavoro tutto il calore scambiato con una sola sorgente a temperatura costante Questi due enunciati sono solo apparentemente differenti: dimostreremo che se non vale luno non può valere laltro II o Principio: Enunciati di Clausius e Kelvin

16 il II o Principio impone dei vincoli alle trasformazioni di calore in lavoro ma non di lavoro in calore (p.es. per attrito si può trasformare lavoro in calore senza alcuna restrizione). Se non fosse vero lenunciato di Kelvin si potrebbe ottenere energia non degradata (p.es. meccanica) utilizzando calore scambiato con una sola sorgente e successivamente trasformare questultimo di nuovo in calore. Ma ciò si può fare a qualunque temperatura, anche superiore a quella della sorgente di partenza. Avremmo, pertanto, realizzato una trasformazione il cui unico risultato sarebbe quello di trasferire calore da una sorgente più fredda ad una sorgente più calda, negando così lenunciato di Clausius. Viceversa, se non fosse vero lenunciato di Clausius si potrebbe far passare, senza altri effetti, una quantità di calore Q da una sorgente a temperatura T 1 ad una a temperatura T 2 >T 1. Ma allora con una macchina termica, che lavori fra queste temperature, sarebbe possibile riassorbire questo calore, trasformarne una parte in energia meccanica L e riversarne il resto, Q-L, sulla sorgente a temperatura T 1. In definitiva la sorgente 1 cede in totale una quantità di calore Q-(Q-L)=L integralmente trasformato in energia non degradata (lavoro meccanico), mentre la sorgente 2 acquista e cede la stessa quantità di calore Q e quindi non interviene affatto nel processo. Questo nega lenunciato di Kelvin In sostanza se non vale un enunciato non vale neanche laltro. Entrambi possono essere dedotti dalla formulazione del II o Principio in termini dellentropia

17 Una possibile formulazione rigorosa: Esiste una funzione di stato, lEntropia, che misura quanta energia, ad una temperatura, diventa inutilizzabile in una data trasformazione; lEntropia di un sistema isolato non può diminuire ed è massima quando un sistema isolato raggiunge lequilibrio LEntropia può variare per cause esterne ed interne al sistema. Si ha: Nella seconda il segno di uguaglianza vale per trasformazioni reversibili ed il segno di maggiore vale per trasformazioni irreversibili La prima equazione dice che pur non essendo il calore scambiato Q un differenziale esatto il suo rapporto con la TEMPERATURA ASSOLUTA invece lo è II o Principio: Entropia

18 Per una trasformazione reversibile il calcolo dellentropia è semplice. Data la capacità termica (assunta costante) per una data trasformazione Per le trasformazioni irreversibili questo risultato è solo il limite inferiore della reale variazione di entropia Tuttavia ci possiamo avvantaggiare del fatto che lentropia è una funzione di stato, cioè assume valori che non dipendono dalla trasformazione, bensì solo dallo stato stesso. Allora si può immaginare una trasformazione fittizia e reversibile che abbia come stati iniziale e finale gli stessi della trasformazione reale e, se si conosce la capacità termica di questa trasformazione reversibile si potrà calcolare la differenza di entropia tra i due stati sempre con la stessa formula. A titolo di esempio si consideri una trasformazione adiabatica irreversibile: essendo la trasformazione irreversibile dovrà aversi Calcolo dellEntropia

19 Ma in una trasformazione adiabatica reversibile la quantità di calore scambiato è sempre nulla, ed è quindi sempre nulla la variazione di entropia (trasformazione isoentropica) La trasformazione fittizia che dobbiamo costruire, quindi, dovrà avere gli stessi stati estremi, ma non potrà essere dello stesso tipo Inoltre anche lambiente che circonda il sistema termodinamico, se questo non è isolato, deve subire una trasformazione identica: solo così la variazione di entropia che la trasformazione irreversibile produce potrà essere correttamente calcolata Ciò si comprende col fatto che la variazione di entropia è in realtà una misura della irreversibilità del processo Per far ciò bisognerà spesso inventare un esperimento mentale in cui il sistema dato dovrà interagire con dei sistemi fittizi come nel successivo esempio

20 Consideriamo, a titolo desempio, lespansione adiabatica di un gas in un cilindro T V2V2 V1V1 T V2V2 V1V1 La rimozione del setto ha fatto sì che il gas occupasse tutto il volume senza che la temperatura cambiasse. La trasformazione è chiaramente irreversibile e noi vogliamo calcolare la variazione di entropia in questa trasformazione ( S tot >0) Accanto al sistema reale dovremo immaginare un sistema fittizio, che potrà essere costituito da un cilindro connesso meccanicamente col recipiente tramite un pistone, e un numero infinito di sorgenti termiche le cui temperature differiscano di infinitesimi. con laiuto di queste sorgenti potremo variare reversibilmente la temperatura del secondo cilindro e quindi la pressione del fluido nel primo. Inoltre ci vorrà unaltra sorgente termica che dovrà restaurare il lavoro meccanico fatto a spese dellenergia interna Entropia di una trasformazione irreversibile

21 T V2V2 V1V1 Sistema reale T+2dT T T+dTT+3dT Q=L T+dT Siccome il sistema compie del lavoro verso lesterno a spese del termostato, bisogna reintegrare reversibilmente questa energia con una sorgente a temperatura T+dT Sistema fittizio

22 Trasformazione reale: la temperatura del fluido resta costante e pari a T. Il suo volume varia da V 1 a V 2 ma il fluido non compie nessun lavoro, non essendovi alcuna forza che si opponga alla sua espansione. Se il gas non è perfetto si avrà Trasformazione fittizia: la temperatura del fluido non cambia ed anche la sua energia interna è la stessa della trasformazione reale ma ora il fluido esegue un lavoro verso lambiente esterno pari a Allora il gas assorbirà dal termostato il calore Q 1 necessario alla variazione di energia interna ed anche del calore necessario a compiere il lavoro L. In totale: Possiamo calcolare allora le variazioni di entropia del gas, del suo termostato e del sistema fittizio

23 Variazione di entropia del gas: Variazione di entropia del termostato perché la sorgente fittizia esterna reintegra al termostato una quantità di calore pari a L Variazione di entropia del sistema fittizio: perché tutto lapparato fittizio cede energia in totale pari ad L Essendo nel sistema fittizio tutte trasformazioni reversibili, la variazione totale di entropia dovrà essere nulla, perché è un sistema isolato dentro il quale avviene una trasformazione adiabatica reversibile (isoentropica)

24 Non è immediatamente ovvio che gli enunciati di Kelvin e Clausius corrispondono alla introduzione dellentropia. Per far questo dobbiamo introdurre la macchina di Carnot La macchina di Carnot è una macchina termica che trasforma in lavoro meccanico la differenza di calore scambiato con due sorgenti (a temperatura diversa) ed è, in particolare costituita un gas perfetto che compie due trasformazioni isoterme e due adiabatiche, tutte reversibili Una macchina termica è un apparato che consente di trasformare energia da un tipo ad un altro, e la macchina di Carnot: 1) riceve una quantità di calore Q 1 da una sorgente a temperatura T 1, durante una espansione isoterma da uno stato A ad uno stato B; 2) Compie una espansione adiabatica dallo stato B ad uno stato C, ad una temperatura T 2

25 P A,V A P B,V B P C,V C P D,V D P A,V A T1T1 T2T2 Q 1, L AB L BC Q 2, L CA L DA L=area del ciclo

26 Si noti che, oltre allo stato iniziale A, lo stato B e lo stato C sono arbitrari, nel senso che sono fissati dal momento in cui decidiamo di interrompere le espansioni, mentre lo stato D è fissato dal fatto che deve giacere sulla stessa adiabatica dello stato A Essendo un ciclo (reversibile), le variazioni totali dellenergia interna e dellentropia devono essere nulle. Dal fatto che lenergia interna non può cambiare deve essere: Si definisce rendimento il rapporto fra il lavoro ottenuto ed il calore assorbito Si hanno evidentemente anche le seguenti relazioni

27 Dato che le trasformazioni sono reversibili è possibile far eseguire il ciclo al contrario. In tal caso, invece che da macchina termica il sistema si comporta da frigorifero: Sfruttando il lavoro L compiuto dallesterno possiamo sottrarre un calore Q 2 alla seconda sorgente, trasferendo Q 2 ed L alla prima sorgente. Si ha in questo caso: È possibile ora dimostrare che il rendimento non dipende dal tipo di fluido usato, ma deve assumere sempre lo stesso valore purché si operi fra le stesse temperature T 1 e T 2 (Teorema di Carnot) Come vedremo questo teorema è una conseguenza del II o Principio e consente una definizione univoca della temperatura assoluta Per adesso citiamo il fatto sperimentale che il rendimento di una macchina è tanto più grande quanto è più grande la differenza di temperatura fra le due sorgenti

28 Supponiamo che due macchine di Carnot, A e B, lavorino fra le stesse temperature ma non abbiano lo stesso rendimento, cioè Visto che possiamo regolare ad arbitrio la prima isoterma e la prima adiabatica, possiamo comunque fare in modo che il lavoro (larea del ciclo) sia lo stesso per le due macchine Dovremo avere: Teorema di Carnot

29 Adesso possiamo far funzionare allinverso la macchina B usando come lavoro entrante il lavoro L prodotto dalla macchina A T1T1 T2T2 A(diretta)B(inversa) L Q1AQ1A Q1BQ1B Q2AQ2A Q2BQ2B Q 2 B- Q 2 A Q 1 B- Q 1 A Si è così ottenuta una macchina termica il cui unico risultato è il trasferimento di una quantità di calore dalla sorgente fredda a quella calda Ciò è sicuramente incompatibile con il II 0 Principio (enunciato di Clausius) quindi è assurda lipotesi A B I conclusione abbiamo quindi dimostrato che il rendimento di una macchina di Carnot dipende SOLO dalle due temperature

30 Abbiamo dimostrato che il rendimento di una macchina di Carnot deve essere una funzione delle sole temperature alle quali lavora la macchina, non del particolare gas o fluido usato, né delle quantità di calore scambiate Ci deve essere allora una maniera per far comparire le temperature nella formula del rendimento al posto dei calori scambiati Possiamo scrivere questa espressione fissando la temperatura più bassa ad un valore di riferimento T 0 Siccome f(T) non dipende dal sistema, non dipende dagli stati iniziali e finali, non dipende dal calore scambiato né dal lavoro prodotto può solo dipendere dalla differenza fra T e T 0 In particolare f(T) deve valere 1 se T=T 0 (rendimento nullo in base allenunciato di Kelvin), infatti in tal caso i calori scambiati sarebbero uguali. Inoltre il rendimento deve crescere quanto più T sia maggiore di T 0 La temperatura assoluta

31 In sostanza f deve essere una funzione universale della temperatura e tale che Questo significa che possiamo costruire un termometro e tararlo secondo la funzione f secondo la semplice formula La scala termometrica così costruita ha il vantaggio di essere indipendente da tutto, e tale temperatura viene denominata assoluta È più difficile (e ben al di là degli scopi di un corso di Fisica I) dimostrare che la Temperatura Assoluta coincide con la scala Kelvin Qui notiamo solo che la temperatura assoluta non può essere negativa (altrimenti si potrebbe avere un rendimento maggiore di uno): lo zero delle temperature assolute deve quindi essere pari alla temperatura più bassa teoricamente raggiungibile, cioè proprio lo Zero Assoluto

32 Altre trasformazioni cicliche

33 È interessante notare che ognuna delle trasformazioni precedenti si può approssimare mediante una somma di tanti cicli di Carnot infinitesimi: larea del ciclo, ovvero il lavoro meccanico ottenuto, si può pensare come somma di tante areole infinitesime ciascuna delle quali è ottenibile come un ciclo di Carnot fra due sorgenti le cui temperature differiscono di un infinitesimo La macchina di Carnot, però, ha il rendimento massimo fra macchine che lavorano fra le stesse temperature, p. es. la macchina di Stirling Consideriamo una macchina di Stirling con un gas perfetto, durante le isoterme non cè variazione di energia interna (perché U=U(T)), mentre lungo le isocore non cè lavoro Il lavoro totale compiuto è la differenza fra il lavoro compiuto nelle isoterme, mentre il calore assorbito (positivo) si ha solo nei tratti AB e DA, visto che negli altri due tratti il gas o si raffredda o viene compresso a temperatura costante Ciclo di Carnot infinitesimo Ciclo di Stirling A C B D

34 Possiamo quindi calcolare il lavoro ed il calore assorbito Avremo per il rendimento Si noti che solo se c V fosse nullo il rendimento diventerebbe quello della macchina di Carnot

35 In base al teorema di Carnot abbiamo dimostrato che Ovvero Se consideriamo il calore scambiato come una quantità algebrica, ovvero positivo se è calore assorbito dal sistema e negativo se è ceduto, potremo scrivere Consideriamo adesso un generico sistema termodinamico che compia una generica trasformazione ciclica (p.es. un ciclo di Stirling) Possiamo immaginare che tale calore sia scambiato entrando in contatto con tante sorgenti la cui temperatura differisce di pochissimo Teorema di Clausius

36 S T-dTTT+dT Q T0T0 Q Q Possiamo poi far scambiare calore alle singole sorgenti con tante macchine di Carnot che lavorino con una sola sorgente a temperatura T 0, per reintegrare il calore Q che ciascuna sorgente cede al sistema S

37 Complessivamente ciascuna delle sorgenti non cede né assorbe calore e tutto linsieme delle macchine di Carnot e del sistema S è un sistema termodinamico che scambia calore con la sola sorgente T 0 e che compie una trasformazione ciclica In base allenunciato di Kelvin, il lavoro ottenuto in questa trasformazione ciclica non può essere positivo! Deve quindi essere: Per ciascun ciclo di Carnot deve essere In definitiva Se il ciclo del sistema S fosse reversibile, potremmo invertire tutto ed ottenere che il lavoro cambi segno. Dovendo ciò valere contemporaneamente alla formula precedente deve essere

38 Ma allora, per un ciclo reversibile, la quantità da integrare si comporta come un differenziale esatto e rappresenta le variazioni infinitesime di una funzione di stato: lentropia Se invece la trasformazione è irreversibile deve essere Se supponiamo, infatti di eseguire un ciclo partendo da uno stato A, andando verso uno stato B mediante una trasformazione irreversibile I, e tornando ad A mediante una trasformazione reversibile R cioè tutte le proprietà dellentropia I R B A

39 Supponiamo di avere un sistema termodinamico che possa scambiare energia con lesterno sotto forma di calore, lavoro delle forze di pressione e variazioni di energia dovute ad eventuali reazioni chimiche. Se le trasformazioni sono anche reversibili il I o Principio assumerà la forma Si noti che in qualche maniera stiamo implicitamente assumendo che lenergia interna sia una funzione delle sole variabili estensive S, V e n i Per confronto col I o Principio troviamo Si noti che queste relazioni che consentono di mettere in relazione le variabili di stato sono le equazioni di stato del sistema Lequilibrio termodinamico e i potenziali termodinamici

40 Adesso fissiamo le variabili estensive del sistema dallesterno, cioè mettiamo il sistema dentro pareti adiabatiche, fissiamone il volume e facciamo in modo che non avvengano reazioni chimiche (fissiamo, cioè, il numero di specie chimiche presenti) Eseguite tali operazioni, che non saranno per nulla tecnicamente facili da realizzare, aspettiamo che il sistema vada allequilibro spontaneamente È ovvio adesso che il sistema è isolato e che la trasformazione spontanea è irreversibile: se il sistema può giungere spontaneamente e reversibilmente allequilibrio altrettanto spontaneamente se ne può discostare In tal caso il I o Principio va cambiato: Mentre il II o Principio richiede Deve quindi essere: Ma le variabili estensive erano state fissate, cioè dS=dV=dn i =0. Pertanto

41 Questultima relazione significa che lenergia interna allequilibrio deve essere un minimo rispetto a variazioni delle variabili di stato e come conseguenza del II 0 Principio Vista da questo punto di vista lenergia interna ha le proprietà dellenergia potenziale in meccanica: è minima allequilibrio

42 Definendo il potenziale termodinamico come una funzione di stato che sia minima allequilibrio, possiamo dire che lenergia interna è un potenziale termodinamico rispetto alle variabili estensive del sistema Tuttavia luso di questo potenziale termodinamico ha delle controindicazioni dal punto di vista pratico: come già notato non è tecnicamente semplice controllare dallesterno le variabili estensive (si pensi che non è affatto facile mantenere costante lentropia) Dal punto di vista tecnico è spesso più facile controllare le variabili intensive, quindi è conveniente introdurre degli altri potenziali termodinamici, ovvero delle funzioni di stato (le cui dimensioni sono energia) che dipendano da altre variabili di stato Per esempio, siccome è molto complicato fissare lentropia di un sistema termodinamico ma è relativamente semplice mantenere costante la temperatura conviene costruire una funzione di stato che dipenda solo da T, V e n i, : lenergia libera di Helmoltz Equazioni di stato

43 Si capisce subito che per un sistema abbandonato a se stesso a temperatura, volume e specie chimiche fissate dovrà essere Due comuni potenziali termodinamici sono lentalpia e lenergia libera di Gibbs Lentalpia è funzione delle variabili S, P e n i Lenergia libera di Gibbs o entalpia libera è funzione delle variabili T, P e n i :

44 La principale proprietà dellentalpia è che la sua variazione è pari al calore scambiato in una trasformazione isobara Si capisce, quindi, la sua utilità nello studio delle reazioni chimiche che avvengono in contenitori aperti, cioè alla pressione atmosferica. In una reazione chimica lo stato iniziale si riferisce ai reagenti e lo stato finale ai prodotti. Deve essere: Se H>0 la reazione si dice endotermica (il sistema deve assorbire calore affinchè la reazione possa avvenire). Se H<0 la reazione è esotermica (il sistema cede calore quando la reazione avviene) Anche le transizioni di fase avvengono a pressione costante ed esiste una relazione fra lentalpia ed il calore latenteEntalpia

45 Anche lentalpia del gas perfetto, analogamente alla energia interna deve essere una funzione della sola temperatura A questo scopo possiamo immaginare il seguente esperimento: si fa fluire un gas attraverso un setto poroso ed in una tubatura adiabatica P 1,T 1 P 2,T 2 Setto poroso AA V1V1 BB V2V2 Il setto creerà una sensibile differenza di pressione dai due lati, così il lavoro compiuto dalle forze di pressione dai due lati sarà diverso Si dovrà avere Entalpia del gas perfetto

46 Il processo è dunque ad entalpia costante. Una misurazione della temperatura in condizioni di bassa densità mostra che Ne segue, allora, che H è solo funzione di T, analogamente allenergia interna Riassumendo un gas perfetto è caratterizzato da Per trasformazioni in cui cambia la temperatura:

47 Per esemplificare lutilità dei potenziali termodinamici, consideriamo un sistema che contenga una miscela di due specie, A e B, e per il quale è facile mantenere costante la pressione (atmosferica) e la temperatura (ambiente) Converrà allora scegliere lenergia libera di Gibbs come potenziale termodinamico e si avrà: Allequilibrio vale il segno di uguaglianza (minimo di G). Se nel sistema avverranno dei processi che trasformano una parte della specie A in B o viceversa dovrà essere Allora si otterrà lequilibrio allorché Quindi la reazione chimica continuerà fino a quando il potenziale chimico di una specie è maggiore dellaltro (e.g. fenomeno della pressione osmotica) Lequilibrio delle fasi


Scaricare ppt "Corso di Fisica Generale Beniamino Ginatempo Dipartimento di Fisica – Università di Messina 1)Utilizzabilità dellEnergia 2)Reversibilità ed irreversibilità"

Presentazioni simili


Annunci Google