La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Richard Meyer, Dives in Misericordia, Roma, Tor Tre Teste Rappresentazione tridimensionale con lutilizzo il software Wolfram Mathematica Prpf. C. Falcolini.

Presentazioni simili


Presentazione sul tema: "Richard Meyer, Dives in Misericordia, Roma, Tor Tre Teste Rappresentazione tridimensionale con lutilizzo il software Wolfram Mathematica Prpf. C. Falcolini."— Transcript della presentazione:

1 Richard Meyer, Dives in Misericordia, Roma, Tor Tre Teste Rappresentazione tridimensionale con lutilizzo il software Wolfram Mathematica Prpf. C. Falcolini – Stud.:De Tulio Francesco, Tartasi Tommaso Progettista Richard Meyer Periodo di costruzione Tipologia Edilizia Chiesa Impresa Italcementi Sistema Costruttivo Calcestruzzo bianco autopulente e vetro

2 Richard Meyer, Dives in Misericordia, Roma, Tor Tre Teste … seeing the third shell being erected I am reminded of hearing a symphony by Beethoven or seeing the third act of a play by Brecht…. Richard Meier

3 La Chiesa di Tor Tre Teste appare improvvisamente, piena di luce e di forza espressiva, tra i grandi palazzi del moderno quartiere romano di Tor Tre Teste. Una piccola struttura, un gioiello dellarchitettura contemporanea, che mai ci aspetteremmo di trovare incastonata in questarea periferica così lontana dalla Roma monumentale. La Chiesa di Tor Tre Teste è stata fortemente voluta da Papa Giovanni Paolo II per essere il memoriale del Grande Giubileo del 2000 e trasposizione visiva dei contenuti dellEnciclica Dives in Misericordia emanata dal Santo Padre nel Novembre del Nel documento il Papa spinge lumanità tutta ad …attingere nelleterno per affrontare le grandi preoccupazioni contemporanee… (Giovanni Paolo II). La nuova chiesa doveva irradiare questo messaggio di grande attualità ed essere testimonianza visibile del cammino della Chiesa nel Terzo Millennio... A questo scopo architetti, tra i più stimati in tutto il mondo, sono stati invitati a presentare un progetto per una chiesa parrocchiale. Richard Meier, vincitore del concorso, sintetizza in modo semplice ma ardito le funzioni di luogo di accoglienza, luogo di convocazione e luogo di Chiesa e crea una struttura ricca di simbologia e spiritualità. Ledificio è caratterizzato da tre grandi vele, gonfie al vento, in calcestruzzo bianco, delle quali la maggiore misura unaltezza di 26 metri. Queste sono unite da ampie superfici vetrate di grandi impatto emozionale. Il tutto rende magnificamente lidea originale della barca della Chiesa che conduce i fedeli nei mari del Terzo Millennio. Entrando allinterno ci si trova in un luogo magico dove le coperture in cristallo e la luminosità diffusa trasformano Dives in Misericordia in una sorgente di luce e verità e trasmettono al visitatore un senso di grande pace e spiritualità.Limponenza e loriginalità del progetto di Meier sono stati una sfida per la moderna ingegneria italiana. Le vele autoportanti sono realizzate in conci, ciascuno del peso di 12 tonnellate. Per il montaggio delle strutture sono state inventate delle macchine specifiche capaci di sopportare tanta sollecitazione. Inoltre il bianco splendente delle superfici esterne della Chiesa è ottenuto grazie ad un nuovo tipo di cemento (Bianco TX Millenium) autopulente, che garantisce linalterazione del colore delle superfici attraverso il tempo.

4 INSERIMENTO DEL SISTEMA DI RIFERIMENTO E DEI COMANDI DI BASE Nel documento di Mathematica sono stati inseriti i comandi base per lavorare sulle immagini bidimensionali (cerchi, ellisse, linea, spirale..) e che sono state utilizzate per lo studio della pianta e della sezione del fabbricato, successivamente le funzioni tridimensionali per la realizzazione del modello.

5 Il primo passo è importare la pianta delledificio nel software in modo da poter seguire landamento del perimetro e avviare lanalisi…. Con il comando Graphics è possibile tracciare dei segmenti (indicandone spessore e colore ) inserendo le coordinate delle estremità di questi. Scrivendo più coordinate è possibile disegnare linee spezzate percorrendo tutto il perimetro… linea01=Graphics[{Thickness[0.005],Red,Line[{{-3.55,4.8},{-3.55,2.95},{- 3.25,2.95},{-3.25,2.1},{-2.95,1.4},{-2.95,-5.9},{2.6,-5.9},{2.6,-3.25},{3.1,- 3.25},{3.1,1.4},{3.45,2.35},{3.45,2.85},{3.55,2.85},{3.55,4.6}}]},PlotRange®{{- 5,5},{-5*725/465,5*725/465}},Axes-True] Le linee vengono disegnate per parti (è riportato lesempio delle perimetrazioni pincipali) ed è possiblile vederle assieme sovrapposte alla pianta grazie al comando Show.

6 Manipulate[Show[GraphicsRow[{im1, ParametricPlot[circle[a, b][k][t], {t, 0, 2 Pi}, PlotRange -> {{-14, 14}, {-14*437/448, 14*437/448}}, PlotStyle -> {Red, Thickness[0.005]}, Axes -> True]}, ImageSize -> {448, 437}, Spacings -> -360]], {a, -20, 20}, {b, -20, 20}, {k, 0, 30}] STUDIO SULLA SEZIONE Lo studio della sezione dimostra come il cerchio è la generatrice principale. Le tre vele principali sono porzioni di cerchio che hanno raggio differente e centro comune. Con lo stumento manipulate è possibile determinare sovrappore i semicerchi sul disegno ricavandone le esatte coordinate di raggio e centro.

7 Manipulate[Show[GraphicsRow[{im1, ParametricPlot[circle[a, b][k][t], {t, 0, 2 Pi}, PlotRange -> {{-14, 14}, {-14*437/448, 14*437/448}}, PlotStyle -> {Red, Thickness[0.005]}, Axes -> True]}, ImageSize -> {448, 437}, Spacings -> -360]], {a, - 20, 20}, {b, -20, 20}, {k, 0, 30}] STUDIO SULLA PIANTA Landamento della pianta ha molte analogie con landamento della sezione, infatti le curve principali sono generate da segmenti di cerchio che hanno raggio differente e centro nel medesimo punto.

8 ParametricPlot3D[sfera[2][u, v] + {1, 1, 1}, {u, 0, Pi}, {v, 0, Pi}, PlotRange -> {{-4, 4}, {-3*600/640, 3*540/640}, {-4, 4}}, Axes -> True, Mesh -> None] ….passagio alle tre dimensioni…. Il comando ParametricPlot3d è utilizzato anche per disegnare solidi di rotazione quali una sfera. Questa è definita da 3 parametri che sono uno il raggio e due le coordinate del suo centro. sfera[a_][u_,v_]:=a {Cos[u] Cos[v],Sin[u] Cos[v],Sin[v]} Modificando tali parametri e imponendo una traslazione sui tre assi è possibile definire la sfera impostata sullarco di circonferenza trovato precedentemente. Specificando il PlotRange si disegna solo la parte del solido che ci interessa. Nelle immagini si vede proprio il passaggio da sfera a semisfera fino ad arrivare alle porzioni di sfera che ci interessano Dove [1.2] è il raggio del solido, +{0.35,0,1} è la matrice di traslazione, e {u,3.3 Pi/4,4.7 Pi/4} è langolo da disegnare… sfer6 = ParametricPlot3D[ sfera[2.15][u, v] + {1.2, -0.35, 0}, {u, 3.3 Pi/4, 4.7 Pi/4}, {v, 0, 1.1 Pi/4}, PlotRange -> {{-3, 3}, {-3*540/640, 3*540/640}, {-3, 3}}, Axes -> True, Mesh -> None]

9 AVANZAMENTO

10 Graphics3D[{Cuboid[{0.4, -1, 0}, {1.4, 0.6, 1.25}], PlotRange -> {{-3, 3}, {-3*540/640, 3*540/640}, {-3, 3}}, Axes -> True}] Show[{vert2, base, campanile, ingresso}, ImageSize -> {640, 540}] POLIGONI 3D Il comando Graphics3d permette di disegnare poligoni tridimensionali definendoli tramite le coordinate spaziali di due spigoli, assunti dal programma come principali. Con lo strumento show è possibile controllare lavanzamento del modello.

11 Show[{sfera1, sfera6, sfer6, sfera2, sfe2, sfe3, sf3, sf4, sfera3, vert2, base, vert10, ver2, vert202, vertingr, campanile, ingresso, cresta1, cresta2, vert21, cresta3}, ImageSize -> {640, 540}] VISTE Il risultato finale mostra tutti gli elementi precedentemente impostati e definiti.

12 CONFRONTO TRA IL MODELLO IN MATHEMATICA E FOTO DELLEDIFICIO


Scaricare ppt "Richard Meyer, Dives in Misericordia, Roma, Tor Tre Teste Rappresentazione tridimensionale con lutilizzo il software Wolfram Mathematica Prpf. C. Falcolini."

Presentazioni simili


Annunci Google