La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

INTERFERENZA A. Martini. Supponiamo di avere due sorgenti di onde, puntiformi, in fase, di uguale lunghezza donda.

Copie: 1
INTERFERENZA A. Martini Supponiamo di avere due sorgenti di onde, puntiformi, in fase, di uguale lunghezza donda.

Presentazioni simili


Presentazione sul tema: "INTERFERENZA A. Martini. Supponiamo di avere due sorgenti di onde, puntiformi, in fase, di uguale lunghezza donda."— Transcript della presentazione:

1 INTERFERENZA A. Martini

2 Supponiamo di avere due sorgenti di onde, puntiformi, in fase, di uguale lunghezza donda

3 Se avviciniamo le sorgenti, le onde si sovrappongono, dando origine ad un fenomeno di interferenza

4

5

6 Come si vede chiaramente, nella zona centrale ci sono righe bianche e nere: questo significa che in questa zona si propaga energia. NON Ma nelle due zone laterali si nota un grigiore uniforme: questo significa che in queste zone NON si propaga energia, non ci sono onde!

7 Allontanando le sorgenti, Il numero e la larghezza delle zone di massimo e minimo cambia:

8 Allontanando le sorgenti, Il numero e la larghezza delle zone di massimo e minimo cambia:

9 Allontanando le sorgenti, Il numero e la larghezza delle zone di massimo e minimo cambia:

10 Allontanando le sorgenti, Il numero e la larghezza delle zone di massimo e minimo cambia:

11 Allontanando le sorgenti, Il numero e la larghezza delle zone di massimo e minimo cambia:

12 Allontanando le sorgenti, Il numero e la larghezza delle zone di massimo e minimo cambia: Più le sorgenti sono lontane, più numerose e vicine tra loro sono le zone di ASSENZA di energia. Queste zone si chiamano minimi Le zone in cui cè energia si chiamano: MASSIMI

13 Naturalmente la posizione dei massimi e dei minimi dipende anche dalla differenza di fase delle sorgenti. IN FASEIN OPPOSIZIONE DI FASE Come si vede qui, se le sorgenti sono IN FASE al centro cè un massimo, se sono IN OPPOSIZIONE DI FASE, al centro cè un minimo! MAX min

14 LA POSIZIONE DEI MASSIMI E DEI MINIMI DIPENDE DAL CAMMINO PERCORSO DALLE ONDE

15 LA POSIZIONE DEI MASSIMI E DEI MINIMI DIPENDE DAL CAMMINO PERCORSO DALLE ONDE

16

17

18

19 In questo caso i cammini percorsi sono uguali le onde partono in fase ed arrivano in fase nel punto O si ha un massimo di energia.

20

21 Consideriamo ora un altro punto sullo schermo P

22 P Consideriamo ora un altro punto sullo schermo

23 P

24 In questo caso i cammini percorsi sono diversi le onde partono in fase ed arrivano in opposizione di fase nel punto P si ha un minimo di energia. P P

25 massimo centrale massimo del primo ordine di destra massimo del primo ordine di sinistra primo minimo di destra primo minimo di sinistra

26 CERCHIAMO LE CONDIZIONI DI MASSIMO E DI MINIMO

27 CERCHIAMO LE CONDIZIONI DI MASSIMO E DI MINIMO

28 Supponiamo che lo schermo sia così lontano dalle sorgenti, da poter considerare i cammini delle onde PARALLELI TRA LORO (condizione di Fraunhofer)

29 O P Supponiamo che lo schermo sia così lontano dalle sorgenti, da poter considerare i cammini delle onde PARALLELI TRA LORO (condizione di Fraunhofer)

30 Se mandiamo la perpendicolare al tragitto rosso che passa per la sorgente azzurra, troviamo la differenza dei tragitti percorsi dalle onde: O P

31 O P S1S1 S2S2 K

32 O P S1S1 S2S2 K d

33 In P si avrà un MASSIMO quando la differenza dei cammini d è multiplo di una lunghezza donda O P S1S1 S2S2 K d

34 O P S1S1 S2S2 K d d = n

35 In P si avrà un MASSIMO quando la differenza dei cammini d è multiplo di una lunghezza donda O P S1S1 S2S2 K d d = n S1S1 S2S2 O K d d

36 In P si avrà un MASSIMO quando la differenza dei cammini d è multiplo di una lunghezza donda O P S1S1 S2S2 K d d = n S1S1 S2S2 O K d d

37 In P si avrà un MASSIMO quando la differenza dei cammini d è multiplo di una lunghezza donda O P S1S1 S2S2 K d d = n S1S1 S2S2 O K d d Da questo momento in poi le onde percorrono lo stesso tragitto, per cui, se sono in fase in S 1 e in K, lo saranno anche in P.

38 In P si avrà un MASSIMO quando la differenza dei cammini d è multiplo di una lunghezza donda O P S1S1 S2S2 K d d = n S1S1 S2S2 O K d d

39 In P si avrà un MASSIMO quando la differenza dei cammini d è multiplo di una lunghezza donda O P S1S1 S2S2 K d d = n S1S1 S2S2 O K d d = d sen d

40 In P si avrà un MASSIMO quando la differenza dei cammini d è multiplo di una lunghezza donda O P S1S1 S2S2 K d d = n S1S1 S2S2 O K d d = d sen d d sen n

41 CERCHIAMO LE CONDIZIONI DI MASSIMO E DI MINIMO

42 CERCHIAMO LE CONDIZIONI DI MASSIMO E DI MINIMO

43 In P si avrà un minimo quando la differenza dei cammini d è multiplo di mezzza lunghezza donda O P S1S1 S2S2 K d

44 O P S1S1 S2S2 K d d = (n-1/2 (con n=1, 2, 3,...)

45 O P S1S1 S2S2 K d S1S1 S2S2 O K d d In P si avrà un minimo quando la differenza dei cammini d è multiplo di mezzza lunghezza donda d = (n-1/2 (con n=1, 2, 3,...)

46 O P S1S1 S2S2 K d S1S1 S2S2 O K d d In P si avrà un minimo quando la differenza dei cammini d è multiplo di mezzza lunghezza donda d = (n-1/2 (con n=1, 2, 3,...) Da questo momento in poi le onde percorrono lo stesso tragitto, per cui, se sono in opposizione di fase in S 1 e in K, lo saranno anche in P.

47 O P S1S1 S2S2 K d S1S1 S2S2 O K d d = d sen d d sen n-1/2) In P si avrà un minimo quando la differenza dei cammini d è multiplo di mezzza lunghezza donda d = (n-1/2 (con n=1, 2, 3,...)

48 d sen n d sen n-1/2) [ MAX ] [ min]

49 d sen n d sen n-1/2) [ MAX ] [ min] E possibile verificare queste condizioni e calcolare lintensità in ogni punto dello schermo, facendo uso della seguente equazione, che determineremo teoricamente:

50 d sen n d sen n-1/2) [ MAX ] [ min] E possibile verificare queste condizioni e calcolare lintensità in ogni punto dello schermo, facendo uso della seguente equazione, che determineremo teoricamente: II dsen MAX cos 2

51 d sen n d sen n-1/2) [ MAX ] [ min] E possibile verificare queste condizioni e calcolare lintensità in ogni punto dello schermo, facendo uso della seguente equazione, che determineremo teoricamente: vai a: [10INT-interf.PPT] II dsen MAX cos 2


Scaricare ppt "INTERFERENZA A. Martini. Supponiamo di avere due sorgenti di onde, puntiformi, in fase, di uguale lunghezza donda."

Presentazioni simili


Annunci Google