La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Introduzione alla Fisica Prof. Valerio CURCIO. Studio dei fenomeni naturali e artificiali Uso della matematica ma totalmente diversa da essa La madre.

Presentazioni simili


Presentazione sul tema: "Introduzione alla Fisica Prof. Valerio CURCIO. Studio dei fenomeni naturali e artificiali Uso della matematica ma totalmente diversa da essa La madre."— Transcript della presentazione:

1 Introduzione alla Fisica Prof. Valerio CURCIO

2 Studio dei fenomeni naturali e artificiali Uso della matematica ma totalmente diversa da essa La madre di tutte le scienze Cosè la Fisica?

3 Cosa significa misurare? Confrontare ciò che si vuole misurare con una quantità nota, detta Unità di Misura Rapportare la grandezza in esame con la corrispondente Unità di Misura Nella forma più generale, Misurare significa Contare.

4 Unità di Misura Ad ogni grandezza è associata una specifica unità di misura. Per esempio, una superficie si misura in metri quadri (m 2 ), un volume si misura in metri cubi (m 3 ) oppure in litri (l), una lunghezza in metri (m). Spesso è utile utilizzare i multipli o i sottomultipli di tali unità di misura, espressi come potenze del 10.

5 Multipli e sottomultipli Multipli Deca (da) = 10 1 Etto (h) = 10 2 Kilo (k) = 10 3 Mega (M) = 10 6 Giga (G) = 10 9 Tera (T) = Peta (P) = Exa (E) = Zetta (Z) = Yotta (Y) = Sottomultipli Deci (d) = Centi (c) = Milli (m) = Micro ( ) = Nano (n) = Pico (p) = Femto (f) = Atto (a) = Zepto (z) = Yocto (y) =

6 Equivalenze unidimensionali Le equivalenze tra unità omogenee unidimensionali si effettuano moltiplicando (se si passa a unità più piccola) o dividendo (se si passa a unità più grande) la misura tante volte per 10 quanti sono i posti tra le due unità, considerando la tabella precedente. Esempio: 32Gb a quanti Mb corrispondono? 32Gb = 32 x 1000Mb = 32000Mb Perché 1Gb = 1000Mb (infatti tra M e G ci sono 3 posti).

7 Equivalenze bidimensionali Le equivalenze tra unità omogenee bidimensionali si effettuano moltiplicando (se si passa a unità più piccola) o dividendo (se si passa a unità più grande) la misura tante volte per 10 2 (100) quanti sono i posti tra le due unità, considerando la tabella precedente. Esempio: 125 m 2 a quanti cm 2 corrispondono? 125 m 2 = 125 x 10 2 x 10 2 cm 2 = cm 2 Perché 1 m 2 = cm 2 (infatti tra m e cm ci sono 2 posti).

8 Equivalenze tridimensionali Le equivalenze tra unità omogenee tridimensionali si effettuano moltiplicando (se si passa a unità più piccola) o dividendo (se si passa a unità più grande) la misura tante volte per 10 3 (1000) quanti sono i posti tra le due unità, considerando la tabella precedente. Esempio: 5400 dm 3 a quanti m 3 corrispondono? 5400 dm 3 = 5400 x m 3 = 5.4 m 3 Perché 1 dm 3 = m 3 (infatti tra dm e m cè un solo posto).

9 Volumi espressi in litri Spesso risulta utile esprimere i volumi in multipli o sottomultipli del litro, piuttosto che in multipli o sottomultipli del metro cubo. Si pensi, ad esempio, ai volumi di cilindrata dei motori, espressi in litri. Lequivalenza di base è la seguente: 1 litro = 1 dm 3 Quindi 1 m 3 = 10 3 dm 3 = 10 3 litri = 1000 litri

10 Problemi con le misure Misure diverse della stessa grandezza devono essere compatibili e convertibili Ognuno, in ogni parte del mondo, deve poter usare il più possibile le stesse unità di misura Problema di gestione di dati provenienti da misurazioni effettuate con unità diverse e poco convertibili Necessità di un unico sistema di unità di misure

11 Sistema Internazionale (SI) 1.Lunghezza – metro (m) 2.Tempo – secondo (s) 3.Massa – kilogrammo (kg) 4.Temperatura – grado Kelvin (K) 5.Intensità di corrente elettrica – Ampere (A) 6.Intensità luminosa – candela (cd) 7.Quantità di materia – mole (mol)

12 I sistemi MKS e cgs Esiste un sottosistema del SI chiamato MKS. Esso è rappresentato dalle prime tre grandezze del SI: lunghezza (m), massa (kg) e tempo (s). Esiste anche il sistema cgs formato anchesso dalle prime tre grandezze del SI: lunghezza (cm), massa (g), tempo (s).

13 Il Metro Scelto come unità di misura alla fine del 1700, definito come la quarantamilionesima parte del meridiano terrestre. Il campione del metro è stato costruito tracciando due incisioni su una barra di platino e iridio, conservata al Museo dei Pesi e delle Misure di Sévres (Parigi). Dal 1983 il metro è stato ridefinito come la distanza percorsa dalla luce nel vuoto in 1/ esimo di secondo circa, quasi un trecentomilionesimo di secondo.

14 Il Kilogrammo Si chiama kilogrammo la massa di un cilindro costituito da una lega di platino e iridio che misura 39 mm in altezza e 39 mm in diametro. Anchesso, come nel caso del metro, si trova al Museo dei Pesi e delle Misure di Sévres, a Parigi. Esiste la copia n° 62 del kilogrammo campione anche in Italia, presso lIstituto di Metrologia Gustavo Colonnetti, a Torino.

15 Il Secondo Il secondo è una frazione del giorno solare medio. In particolare esso è l86400-esima parte del giorno solare medio. Data la variabilità del giorno solare medio, oggi il campione di tempo corrisponde al tempo di oscillazioni delle onde emesse dal Cesio 133 in una particolare transizione atomica.

16 Il grado Kelvin E la centesima parte della distanza termica tra il punto triplo dellacqua distillata (ghiaccio fondente) e il punto di ebollizione della stessa. Esso possiede la stessa ampiezza del grado Celsius (o centigrado). La scala Kelvin presenta lo zero assoluto, temperatura minima limite e non raggiungibile in natura.

17 LAmpere LAmpere è lintensità di corrente elettrica che circola in un conduttore quando, per una sezione di esso, passa la carica di 1 Coulomb ogni secondo.

18 La Mole La mole viene definita come la quantità di sostanza di un sistema che contiene un numero di entità elementari (atomi, molecole, ioni, radicali, elettroni, fotoni, ecc…) pari al numero di atomi presenti in 12 grammi di carbonio-12. Tale numero è noto come Numero di Avogadro, ed è pari a 6.022×10 22.

19 La Candela Una candela è pari allintensità luminosa, in una data direzione, di una sorgente emettente una radiazione monocromatica di frequenza pari a 540×10 12 hertz (Hz) e di intensità radiante in quella direzione di 1/683-esimo di watt per steradiante.

20 Grandezze Fondamentali e derivate Le sette grandezze appartenenti al SI si chiamano Grandezze Fondamentali. Da esse è possibile ricavare nuove grandezze, dette grandezze derivate, attraverso le classiche quattro operazioni matematiche, ma solo sotto opportune condizioni.

21 Operazioni tra grandezze Due o più grandezze, sia fondamentali che derivate, si possono sommare e/o sottrarre solo se sono omogenee, ossia uguali in tutto e per tutto (lo stesso vale per gli operatori di confronto >, <, =, ecc…). Due o più grandezze, sia fondamentali che derivate, si possono moltiplicare e/o dividere anche se non sono omogenee.

22 Esempi di operazioni 5 m + 27 m = 32 m 10 s – 5 m non ha senso! 42 m ÷ 13 s = 3.23 m/s 12 m/s ÷ 6 s = 2 m/s 2 15 m/s m/s non ha senso! 0.5 m × 0.2 m = 0.1 m 2

23 Alcune grandezze derivate Velocità (m/s) Accelerazione (m/s 2 ) Densità (kg/m 3 ) Forza (N = kg×m/s 2 ) N sta per Newton Energia (J = N×m) J sta per Joule Potenza (W = J/s) W sta per Watt Carica elettrica (C = A×s) C sta per Coulomb

24 Strumenti di misura Gli strumenti di misura sono oggetti che ci permettono, più o meno facilmente, di confrontare la misura di una certa grandezza con lunità di misura di riferimento. Essi devono avere quattro caratteristiche fondamentali: 1.Portata 2.Sensibilità 3.Precisione 4.Prontezza

25 La Portata La portata di uno strumento di misura indica la misura massima che lo strumento è in grado di effettuare. Per esempio, una bilancia dalla portata di 5 kg non è in grado di misurare la massa di un essere umano adulto, evidentemente maggiore di 5 kg.

26 La Sensibilità La sensibilità di uno strumento di misura indica la misura più piccola che lo strumento riesce a rivelare. Per esempio, una bilancia la cui sensibilità è di 0.1 kg non è adatta a misurazioni di precisione, per esempio di piccolissime quantità di metalli preziosi.

27 La Precisione La precisione di uno strumento di misura indica il grado di accuratezza della misura effettuata. La precisione è un parametro che indica il discostamento della misura rivelata rispetto a quella reale. Uno strumento di misura sofisticato è spesso più preciso di uno rudimentale.

28 La Prontezza La prontezza di uno strumento di misura indica il tempo impiegato dallo strumento a rivelare la misurazione. Strumenti come cronometri ad altissima precisione hanno bisogno ovviamente di una prontezza molto elevata. La prontezza non è importante quando si eseguono misurazioni grossolane con margini di errore elevati.

29 Altre proprietà degli strumenti di misura Strumenti analogici Sono quelli in cui la misura rivelata la si legge attraverso una apposita scala graduata (es. il metro del falegname oppure gli strumenti ad ago come gli amperometri analogici). Strumenti digitali Sono quelli in cui la misura rivelata la si legge sotto forma di cifre (es. strumenti con schermi a cristalli liquidi, ecc…). La parola digitale deriva dallinglese digit, che significa cifra.

30 Alcuni strumenti analogici Metro a nastro Orologio a lancette Voltmetro ad ago

31 Alcuni strumenti digitali Metro a ultrasuono Orologio al quarzo Voltmetro elettronico

32 Misure dirette e indirette Misure dirette Sono quelle misure che vengono rivelate direttamente da uno strumento di misura. Sono misure dirette quelle di lunghezze, tempi, masse, ecc… Misure indirette Sono quelle misure che risultano dopo opportuni calcoli matematici. Sono misure indirette quelle di superfici, di volumi, di accelerazioni, ecc…


Scaricare ppt "Introduzione alla Fisica Prof. Valerio CURCIO. Studio dei fenomeni naturali e artificiali Uso della matematica ma totalmente diversa da essa La madre."

Presentazioni simili


Annunci Google