La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Il metodo scientifico La Fisica studia i fenomeni naturali per: fornire una descrizione accurata di tali fenomeni interpretare le relazioni fra di essi.

Presentazioni simili


Presentazione sul tema: "Il metodo scientifico La Fisica studia i fenomeni naturali per: fornire una descrizione accurata di tali fenomeni interpretare le relazioni fra di essi."— Transcript della presentazione:

1 Il metodo scientifico La Fisica studia i fenomeni naturali per: fornire una descrizione accurata di tali fenomeni interpretare le relazioni fra di essi Il metodo scientifico: osservazione sperimentale di un fenomeno riconoscimento degli elementi caratteristici del fenomeno formulazione di ipotesi sulla natura del fenomeno costruzione di una teoria permette di interpretare il fenomeno in esame permette di fare delle predizioni sul fenomeno verifica sperimentale della teoria conferma o smentisce le previsioni teoriche

2 Grandezze fisiche Definizione operativa di una grandezza fisica specifica le operazioni da compiere per misurarla: criteri di uguaglianza e somma (e differenza) unità di misura Misura diretta avviene per confronto della grandezza fisica in esame con un altra scelta come campione Misura indiretta viene derivata dalla misura di altre grandezze fisiche sfruttando le relazioni esistenti tra le varie grandezze fisiche (es. v=s/t)

3 Sistemi di unità di misura Le relazioni indipendenti esistenti fra le grandezze fisiche che intervengono in Fisica (o in un settore della Fisica) sono in numero inferiore rispetto alle grandezze fisiche stesse Esistono quindi delle grandezze fisiche (dette grandezze fondamentali) per cui è necessario fissare i campioni e le unità di misura in maniera arbitraria Le altre grandezze, le cui unità di misura sono dedotte da quelle delle grandezze fondamentali, si chiamano grandezze derivate Un sistema di unità di misura è definito scegliendo le grandezze fondamentali e le loro unità di misura. Le unità di misura delle grandezze derivate si esprimono in termini di quelle delle grandezze fondamentali

4 I sistemi MKS e CGS in meccanica Le grandezze fondamentali sono lunghezza, massa e tempo LunghezzaMassaTempo MKSmetro (m)chilogrammo (kg)secondo (s) CGScentimetro (cm)grammo (g)secondo (s) Le unità di misura delle grandezze derivate si esprimono in termini di quelle delle grandezze fondamentali. Per esempio, la velocità nel sistema MKS si misura in metri / secondo, mentre nel sistema CGS si misura in centimetri / secondo metro = lunghezza del tragitto compiuto dalla luce nel vuoto in un intervallo di tempo di 1/ secondi chilogrammo = massa del prototipo internazionale secondo = tempo pari a oscillazioni della radiazione emessa in una particolare transizione dell atomo di cesio 133

5 Il Sistema Internazionale (SI) Grandezza fondamentale Unità di misuraSimbolo Lunghezzametrom Massachilogrammokg Temposecondos Corrente elettricaAmpereA Temperaturagrado KelvinK Intensità luminosacandelacd quantità di sostanza molemol

6 Equazioni dimensionali Ad ogni grandezza misurata si associa una dimensione, che è indipendente dallunità di misura con la quale viene espressa Ciascuna grandezza fisica può essere espressa mediante unequazione dimensionale Esempi: la velocità v ha equazione dimensionale [v] = [L][T -1 ] larea A ha equazione dimensionale [A] = [L 2 ] il volume V ha equazione dimensionale [V] = [L 3 ] la forza F ha equazione dimensionale [F] = [MLT -2 ] Grandezze omogenee hanno le stesse dimensioni Due quantità possono essere uguagliate solo se sono dimensionalmente compatibili

7 Grandezze adimensionali Sono definite come rapporto fra grandezze omogenee Il loro valore è indipendente dal sistema di unità di misura scelto Esempio: langolo piano espresso in radianti è definito come rapporto fra la lunghezza dellarco ed il raggio l R θ = l / R θ

8 Notazione scientifica Nella notazione scientifica si indica il risultato di una misura tramite le potenze di 10 Il numero viene scritto mettendo la virgola dopo la prima cifra diversa da zero e moltiplicandolo per una opportuna potenza di 10, positiva o negativa Esempi: 456,7 kg 0,00345 kg 4, kg 3, kg

9 Ordine di grandezza Si definisce ordine di grandezza di un numero la potenza di 10 che meglio lo approssima Per determinare lordine di grandezza di un numero x si procede nel modo seguente: si scrive il numero in notazione scientifica, nella forma x=a 10 b se |a | < 5, lordine di grandezza del numero x è b se |a | 5, lordine di grandezza del numero x è b+1 Esempi: massa della Terra = 5, kg o.d.g. = kg massa del protone = 1, kg o.d.g. = kg

10 Multipli e sottomultipli PREFISSOVALORESIMBOLOPREFISSOVALORESIMBOLO DECA10daDECI10 -1 d ETTO10 2 hCENTI10 -2 c KILO10 3 kMILLI10 -3 m MEGA10 6 MMICRO10 -6 GIGA10 9 GNANO10 -9 n TERA10 12 TPICO p PETA10 15 PFEMTO f

11 Esempi di grandezze fisiche caratteristiche raggio dell'universo m raggio della galassia10 21 m raggio del Sole m raggio della Terra 6, m lunghezza donda della luce visibile m = 0.5μm raggio di un atomo m = 100 pm = 1Å raggio di un nucleo m=1 fm raggio dell'elettrone < m (puntiforme?) età delluniverso10 17 s un anno3, s periodo di oscillazione della nota LA 2, s = 2,3 ms tempo di transizione tra livelli atomici10 -8 s = 10 ns tempo di commutazione di un transistor10 -9 s = 1 ns periodo di oscillazione della luce visibile s = 10 fs massa delluniverso10 53 kg massa della galassia kg massa del Sole kg massa della Terra kg massa del protone1, kg massa dellelettrone9, kg

12 Cifre significative Esempio: risultati di misure forniti con diversi numeri di cifre significative: 1 cifra significativa: 5 m 1 cifra significativa: 0,006 km Gli zeri che precedono la prima cifra non nulla non sono cifre significative! 2 cifre significative: 3,0 m Gli zeri che seguono lultima cifra non nulla sono cifre significative! 2 cifre significative: 0,40 m In questo caso lo zero prima della virgola non è una cifra significativa, mentre il secondo zero è una cifra significativa

13 Cifre significative in somme e differenze 70,6m + 6,43 m = 77,03 m 77,0m 24,02m + 122,157 m = 146,177m 146,18m Risultati corretti Il risultato di una addizione (o di una sottrazione) va espresso con un numero di cifre dopo la virgola pari a quelle delladdendo con meno cifre dopo la virgola Gli arrotondamenti vanno fatti per difetto se la cifra che segue lultima cifra significativa è 5. Se la cifra dopo lultima cifra significativa è un 5, e non è seguita da altre cifre, larrotondamento va fatto per difetto; se invece essa è seguita da altre cifre, si arrotonda per eccesso

14 Cifre significative in prodotti e rapporti Esempio: misura delle dimensioni di un rettangolo con un metro Accuratezza della misura: ±0,1cm a = 11,6 cm b = 6,4 cm I valori misurati a e b hanno rispettivamente 3 e 2 cifre significative Calcoliamo larea A = a b = 74,24 cm 2 Il risultato corretto è A=74 cm 2 (2 cifre significative, come b) Il risultato di un prodotto va espresso con un numero di cifre significative pari a quello del fattore che ha meno cifre significative


Scaricare ppt "Il metodo scientifico La Fisica studia i fenomeni naturali per: fornire una descrizione accurata di tali fenomeni interpretare le relazioni fra di essi."

Presentazioni simili


Annunci Google