Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoStefania Bartoli Modificato 10 anni fa
1
Trasformazioni termodinamiche Cicli e macchine termiche
Termodinamica 5 Trasformazioni termodinamiche Cicli e macchine termiche A. Stefanel - Termodinamica 5
2
A. Stefanel - Termodinamica 5
Trasformazione termodinamica: Sistema nello stato finale es. sistema idrostatico nello stato (Pf;Vf;Tf) Sistema nello stato iniziale es. sistema idrostatico nello stato (Pi;Vi;Ti) Trasformazione P (Pi;Vi;Ti) (Pf;Vf;Tf) V A. Stefanel - Termodinamica 5
3
A. Stefanel - Termodinamica 5
In generale in una trasformazione non è possibile definire il valore delle coordinate termodinamiche del sistema durante la trasformazione: Il sistema è fuori equilibrio (termodinamico) (es. pressione P e temperatura T in un gas in espansione variano da punto a punto non sono definiti i valori di P e T dell’intero gas non si può rappresentare la trasformazione in un piano PV) Se non sono definite le coordinate termodinamiche non sono definiti gli stati del sistema durante la trasformazione P (Pi;Vi;Ti) ? (Pf;Vf;Tf) Non è possibile ripercorrere a ritroso la trasformazione La trasformazione è irreversibile V A. Stefanel - Termodinamica 5
4
A. Stefanel - Termodinamica 5
Trasformazione reversibile: una trasformazione che può essere ripercorsa a ritroso (le coordinate termodinamiche sono definite in ogni istante del processo). Una trasformazione reversibile si può avere solo se le coordinate termodinamiche subiscono variazioni infinitesime (il sistema passa per successivi stati di equilibrio infinitesimamente vicini) Reversibilità esterna: sia il sistema, sia l’ambiente possono essere riportati allo stato iniziale ripercorrendo gli stati della trasformazione diretta. La presenza di attriti in tutti i processi reali comporta che tutti i processi reali siano di fatto irreversibili (l’ambiente non può mai essere riportato allo stato iniziale). A. Stefanel - Termodinamica 5
5
A. Stefanel - Termodinamica 5
Processo reversibile: Non vi sono Forze non conservative Non vi sono attriti Non vi sono forze non bilanciate (processo quasi-statico) Non vi sono processi chimici o trasferimenti macroscopici di calore Richiedono un tempo Infinito SONO ASTRAZIONI TEORICHE Tutti i processi spontanei sono irreversibili (l’universo non può essere riportato nel suo stato iniziale) A. Stefanel - Termodinamica 5
6
A. Stefanel - Termodinamica 5
Le principali trasformazioni per un sistema idrostatico Isocora (V = costante) Isobara (P =costante) Isoterma (T = costante) Adiabatica (Q=0 // sistema isolato termicamente) A. Stefanel - Termodinamica 5
7
A. Stefanel - Termodinamica 5
Trasformazioni isocore (V = costante): (Pi;V;Ti) (Pf;V;Tf) W = 0 Indipendentemente dal tipo di trasformazione Q = m cv T Uv= Q Dal primo principio della termodinamica: Q = U = m cv T cv = (1/m) (U/T)v P Trasformazione reversibile Pf Q = m cv (Tf – Ti) Pi Tf Ti V V A. Stefanel - Termodinamica 5
8
A. Stefanel - Termodinamica 5
Trasformazioni isobare (P = costante): (P;Vi;Ti) (P;Vf;Tf) Trasformazione reversibile Q = m cp T W = P (Vf – Vi) Dal primo principio della termodinamica: U= mcp (Tf – Ti) – P (Vf – Vi) P P W Tf Ti Vi Vf V A. Stefanel - Termodinamica 5
9
A. Stefanel - Termodinamica 5
Trasformazione isoterma (T = costante) (Pi;Vi;T) (Pf;Vf;T) Vf ∫ Trasformazione reversibile W = P dV P Per un gas ideale : PV = nR T 1 ---- dV V Vf ∫ Vf ∫ W = P dV = nRT Pi = nRT ln (Vf / Vi) Pf Tf Ti U = U (T) 0 = Q –W Q = W Vi Vf V Q = nRT ln (Vf / Vi) A. Stefanel - Termodinamica 5
10
A. Stefanel - Termodinamica 5
Trasformazione adiabatica Sistema isolato termicamente: Q =0 W = -U n cv dT = - P dV n cv dT = - nR T/ V dV R = cp - cv cv dT / T = -R dV / V cv dT / T = -(cp –cv) dV / V P adiabatica dT / T = - (cp/cv -1) dV / V dT / T = -( -1) dV / V = cp / cv Ti Tf Tf ∫ V Vf ∫Vf dT / T = - ( -1) dV / V A. Stefanel - Termodinamica 5
11
A. Stefanel - Termodinamica 5
Trasformazione adiabatica Sistema isolato termicamente: Q =0 W = -U dT / T = ( -1) dV / V Tf ∫ Vf ∫Vf dT / T = - ( -1) dV / V P adiabatica Ln (Tf / Ti) =- ( -1) Ln (Vf / Vi) stato i Ln (Tf / Ti) = Ln (Vi / Vf) -1 Ti stato f Tf / Ti = (Vi / Vf) -1 Tf V Tf Vf -1 = Ti Vi -1 A. Stefanel - Termodinamica 5
12
A. Stefanel - Termodinamica 5
Trasformazione adiabatica Sistema isolato termicamente: Q =0 W = -U Tf Vf -1 = Ti Vi -1 Tf = PfVf / nR Ti= PiVi / nR Pf Vf Vf -1 = Pi Vi Vi -1 P adiabatica stato i Pf Vf = Pi Vi Ti stato f Tf V > 1 Gas monoatomivo: = 1,4 A. Stefanel - Termodinamica 5
13
A. Stefanel - Termodinamica 5
Ciclo termodinamico: successione di trasformazioni effettuate su un sistema termodinamico, che riportano il sistema allo stato iniziale (in un ciclo reale il sistema viene riportano approssimativamente nello stato iniziale alla fine di ogni ripetizione del ciclo, le coordinate termodinamiche del sistema assumeranno un valore intorno a un valore medio) Macchina termica: dispositivo che fa compiere al sistema un ciclo. QA Macchina termica W W: lavoro netto compiuto dal sistema nel ciclo QC Le macchine termiche sono state ideate per fornire in modo continuativo lavoro verso l’esterno, ripetendo il ciclo (in linea di principio un numero illimitato di volte). Potenza: P = W/t u.m. : watt 1W = 1J s-1 Scopo: si fornisce al sistema un’energia pari a QA e si fa produrre lavoro W al sistema, facendogli compiere un ciclo. W W/ t QA-QC QA QA /t QA Efficienza del ciclo: = = = A. Stefanel - Termodinamica 5
14
A. Stefanel - Termodinamica 5
Ciclo termodinamico: successione di trasformazioni effettuate su un sistema termodinamico, che riportano il sistema allo stato iniziale. Macchina termica: dispositivo che fa compiere al sistema un ciclo. QA Macchina termica W W: lavoro netto compiuto dal sistema nel ciclo QC Le macchine termiche sono state ideate per fornire in modo continuativo lavoro verso l’esterno, ripetendo il ciclo (in linea di principio un numero illimitato di volte). Scopo: si fornisce al sistema un’energia pari a QA e si fa produrre lavoro W al sistema, facendogli compiere un ciclo. W/ t W QA-QC QA /t QA QA Efficienza del ciclo: = = = A. Stefanel - Termodinamica 5
15
A. Stefanel - Termodinamica 5
Esempio di ciclo P Stato iniziale: Pa, Va, Ta = PaVa /nR Pb Pa Trasformazione I isocora: V=Va P: Pa Pb T: Ta Tb=PbVb/nR I V Va Vb A. Stefanel - Termodinamica 5
16
A. Stefanel - Termodinamica 5
Esempio di ciclo P Stato iniziale: P1, V1, T1 = P1V1 /nR II Trasformazione II isobara: P=P2 V: V1 V T: T2 T3=P2V2/nR P2 P1 Trasformazione I isocora: V=V1 P: P1 P T: T1 T2=P2V1/nR I Trasformazione III isocora: V=V2 P: P2 P T: T3 T4=P1V2/nR III IV Trasformazione IV isocora: V=V2 P: P2 P T: T3 T4=P1V2/nR V V V2 A. Stefanel - Termodinamica 5
17
A. Stefanel - Termodinamica 5
Stato iniziale: P1, V1, T1 = P1V1 /nR Esempio di ciclo P2, V1, T2 = P2V1 /nR P P2, V2, T3 = P2V2 /nR II P2 P1 P1, V2, T4 = P1V2 /nR I III Stato finale: P1, V1, T1 = P1V1 /nR IV Nell’intero ciclo: U = W = Q V V2 V Trasformazione I isocora: W= Q = n cv (T2-T1)= (cv/R) (P2-P1) V U =Q Trasformazione II isobara: W=P2 (V2 – V1) Q= n cp (T3 – T2) = cp /R P2(V2-V1) Trasformazione III isocora: W=0 Q = n cv (T4-T3)= (cv/R) (P1-P2) V U =Q Trasformazione IV isobara: W=P1 (V1 – V2) Q= n cp (T4 – T1) = cp /R P1(V1-V2) A. Stefanel - Termodinamica 5
18
A. Stefanel - Termodinamica 5
Stato iniziale: P1, V1, T1 = P1V1 /nR Esempio di ciclo P2, V1, T2 = P2V1 /nR P P2, V2, T3 = P2V2 /nR II P2 P1 P1, V2, T4 = P1V2 /nR I III Stato finale: P1, V1, T1 = P1V1 /nR IV Nell’intero ciclo: U = W = Q V V2 V Lavoro compiuto nell’intero ciclo: Wtot=P2 (V2 – V1) + P1 (V1 – V2) = (P2-P1) (V2-V1) >0 Calore assorbito nell’intero ciclo: Qas= n cv (T2 – T1) + n cp (T3 – T2) = )= (cv/R) (P2-P1) V1 + (cp /R) P2(V2-V1) >0 Calore ceduto: QC= n cp (T4 – T1) +n cv (T4-T3)= (cp /R) P1(V1-V2) + (cv/R) (P1-P2) V2 <0 A. Stefanel - Termodinamica 5
19
A. Stefanel - Termodinamica 5
Stato iniziale: P1, V1, T1 = P1V1 /nR Esempio di ciclo P2, V1, T2 = P2V1 /nR P P2, V2, T3 = P2V2 /nR II P2 P1 P1, V2, T4 = P1V2 /nR I III Stato finale: P1, V1, T1 = P1V1 /nR IV Nell’intero ciclo: U = W = Q V V2 V Lavoro compiuto nell’intero ciclo: Wtot=P2 (V2 – V1) + P1 (V1 – V2) = (P2-P1) (V2-V1) >0 Calore complessivamente scambiato nell’intero ciclo: Qas-Qc = (cv/R)(P2-P1)V1 - (cv/R)(P1-P2)V2 + (cp /R)P2(V2-V1) - (cp /R)P1(V1-V2)= = (cv/R)(P2-P1)(V1 - V2) + (cp /R)(P2-P1)(V2-V1)= = (cp - cv)/R (P2-P1) (V2 – V1) = (P2-P1)(V2-V1) = W A. Stefanel - Termodinamica 5
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.