La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Istituto Tecnico industriale L.Galvani v. Marchesella, 188 – Giugliano in Campania Tel 081/8941755 – Fax 081/8948548 sito web : www.itisgalvani.it- email.

Presentazioni simili


Presentazione sul tema: "Istituto Tecnico industriale L.Galvani v. Marchesella, 188 – Giugliano in Campania Tel 081/8941755 – Fax 081/8948548 sito web : www.itisgalvani.it- email."— Transcript della presentazione:

1 Istituto Tecnico industriale L.Galvani v. Marchesella, 188 – Giugliano in Campania Tel 081/ – Fax 081/ sito web :

2 UNA MATEMATICA ELETTRIZZATA

3 CENNI DI TEORIA DELLA PROBABILITA A cura di: P. Annunziata - T. Conforti – F. Chiariello – A. Fernandez – G. Borzacchelli – P. Spada – G. Esposito – G. Trinchillo – C. Duilio – R. Berlingieri – L. Ruggiero – G. Migliaccio – P. Troise

4

5 Variabili aleatorie Una variabile aleatoria (casuale, stocastica, random) può essere pensata come il risultato numerico di un esperimento quando questo non è prevedibile con certezza (ossia non deterministico). Ad esempio, il risultato del lancio di un dado può essere pensato come una variabile aleatoria (v.a.) che può assumere uno dei sei possibili valori {1,2,3,4,5,6}. Lo spazio dei campioni Ω è linsieme dei valori che può assumere una v.a. (per es. Ω = {1,2,3,4,5,6}). Le variabili aleatorie a una dimensione si dicono semplici o univariate. Le variabili aleatorie a più dimensioni si dicono multiple o multivariate. Variabili casuali che dipendono da un parametro t (per esempio il tempo) vengono considerati dei processi stocastici.

6 Probabilità Ad una variabile casuale x si associa (in modo non univoco) una probabilità P(x), che assegna la probabilità che la v.a. x assuma un valore in Ω:

7 Probabilità

8 DISTRIBUZIONI DI PROBABILITA Distribuzione di Bernoulli Distribuzione binomiale Distribuzione di Poisson Distribuzione binomiale negativa Distribuzione uniforme Distribuzione normale Distribuzione esponenziale Distribuzione del Distribuzione F Distribuzione t-Student Distribuzione beta Distribuzione di Gumbel Distribuzione di Weibull Distribuzione Log-normale Distribuzione Gamma Distribuzioni discrete

9 Distribuzione normale Tra le varie distribuzioni di probabilità, un ruolo fondamentale in statistica spetta alla distribuzione Normale o Gaussiana in quanto o è la distribuzione base di partenza per altre v.a. o è la distribuzione con la quale possono essere approssimate altre distribuzioni in certe situazioni limite. Funzione di distribuzione di probabilità:

10 Distribuzione Normale

11 Funzione di distribuzione o funzione di ripartizione normale: [Esempi con MATLAB]

12 Per ricavare questa distribuzione, data la v.a. X si definisce una nuova v.a. Z, detta variabile standardizzata: Distribuzione normale standardizzata

13 Intervallo di confidenza di una sigma

14 Intervallo di confidenza di due sigma

15 Intervallo di confidenza di tre sigma

16 –La somma Y N di N v.a. gaussiane N(μ,σ) è essa stessa una v.a. gaussiana con attesa μN e varianza σ 2 N. –La media di N v.a. gaussiane N(μ,σ), Y N /N è ancora gaussiana con attesa μ e varianza σ 2 /N 0 per N, purché σ sia finito. –Il Teorema del Limite Centrale stabilisce che la media di campioni estratti da una generica popolazione, Y N /N, nel limite N tende ad una distribuzione gaussiana, anche se le distribuzioni di partenza non sono gaussiane (purché σ sia finita). –La distribuzione binomiale tende ad una Gaussiana per N (numero di prove) e p q ½. Distribuzione normale come limite di altre distribuzioni

17

18

19 [verifica con MATLAB]

20 Applicazione nel campo del telerilevamento Nel campo del telerilevamento ed in particolare nel settore radar i segnali elettromagnetici in ricezione presentano una componente di rumore sovrapposta a quello utile, per cui necessitano tecniche statistiche al fine di estrapolare tutte le informazioni possibili.segnalirumoreutile Presenza di un bersaglio distanza Velocità Ecc. (dipende dal tipo di applicazione)

21 Applicazione nel campo del telerilevamento Per esempio il segnale in ricezione ad un apparato radar è composto da un rumore di tipo additivo la cui distribuzione è di tipo gaussiana. Pertanto a fronte dellanalisi statistica e della teoria decisionale vengono realizzati apparati riceventi appositamente progettati per lo scopo cioè filtraggi statistici la cui funzione di trasferimento deve rispettare i principi delle teorie suddette.

22 Si ringraziano i seguenti docenti per la collaborazione: Barbato Antonio Cantone Salvatore Fatatis Rossella Guarino Francesco e tutti i docenti del Progetto Lauree Scientifiche – Dipartimento di Matematica – Università di Napoli Federico II


Scaricare ppt "Istituto Tecnico industriale L.Galvani v. Marchesella, 188 – Giugliano in Campania Tel 081/8941755 – Fax 081/8948548 sito web : www.itisgalvani.it- email."

Presentazioni simili


Annunci Google