La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Lezione II Esperimenti sulla massa classica. Riassunto Lezione Precedente un corpo in movimento, in assenza di forze esterne, si muove con velocità costante.

Presentazioni simili


Presentazione sul tema: "Lezione II Esperimenti sulla massa classica. Riassunto Lezione Precedente un corpo in movimento, in assenza di forze esterne, si muove con velocità costante."— Transcript della presentazione:

1 Lezione II Esperimenti sulla massa classica

2 Riassunto Lezione Precedente un corpo in movimento, in assenza di forze esterne, si muove con velocità costante. A B Legge della Gravitazione Universale

3 Misure di G un corpo in movimento, in assenza di forze esterne, si muove con velocità costante. Scarsa accuratezza nella conoscenza di masse e raggi dei pianeti Cavendish Experiment (1798)

4 Misure di G un corpo in movimento, in assenza di forze esterne, si muove con velocità costante. E’ considerato il primo esperimento moderno !!! Miglioramenti 1) Fibre di quarzo, Leve Ottiche (Boys, 1889) 2) Periodo invece che angoli (Heyl, 1942) Accuratezza di qualche parte per mille

5 Misure di G un corpo in movimento, in assenza di forze esterne, si muove con velocità costante. G Source of the CODATA internationally recommended values

6 Riassunto Lezione Precedente un corpo in movimento, in assenza di forze esterne, si muove con velocità costante. M I =1 kg M A =1 kg x r x r M P =1 kg (UFF) M I = M A = M P (Azione-Reazione) M Inerziale M Passiva M Attiva

7 Contenuto della Lezione 2 1) Misure di Proporzionalità tra Massa Attiva e Passiva : Saranno discusse le due verifiche più importanti, dovute a Kreuzer e Bartlett-Van Buren 2) Misure di Unicità del Free Fall: Saranno discusse le principali tecniche sperimentali per verificare l’unicità del Free Fall, con particolare attenzione al funzionamento degli esperimenti con la bilancia di torsione. 3) Effetti di gravitazione Classica : le forze mareali

8 Verifiche m passiva  m attiva : Kreuzer ANALISI DELLE DISCREPANZE SULLE MISURE DI G CON PENDOLI DI TORSIONE La misura di G si basa su misure di 1) Distanza 2) Peso 3) Costante di torsione del pendolo Il risultato di G dipende dal valore m attiva della grande massa attraente. Valori di G diversi ottenuti con masse di diversa natura possono essere interpretati come limite superiore alla dipendenza di m attiva dalla composizione dei materiali. Errore tipico.002/6.67 ~ Indicazione della presenza di un errore sistematico o di un effetto di violazione?

9 Verifiche m passiva  m attiva : l’esperimento di Kreuzer L.B.Kreuzer, Phys. Rev., 169, nr.5 ( ), 1968.

10 Verifiche m passiva  m attiva : Kreuzer 1) Densità uguali tra liquido e solido 2) Massa chimicamente inerte ed omogenea 3) Diverse composizione nucleare (E/A) e (Z/A) Teflon (76% di Fluoro) immerso in una mistura di Triclorotilene e Dibromometano (74% di Bromo) La strategia di misura 1) Bilancia di torsione 2) Misura di zero 3) I segnali devono dipendere direttamente dalle differenze di massa per ridurre l’errore.

11 Verifiche m passiva  m attiva : Kreuzer I Segnali 1)La forza d’attrazione gravitazione misura la differenza di massa attiva tra fluido e solido 2) La differenza di densità misura la differenza di massa passiva tra fluido e solido Il Metodo ed il suo Limite Rivelazione sincrona al moto del cilindro Misura della temperatura per monitorare la densità, essendo noti i coefficienti di dilatazione del solido e del liquido Errore sistematico:  filo di nylon che trascina il corpo diversa da  Teflon Densità uguali L’errore  y nel punto dell’intersezione definisce il limite superiore

12 Verifiche m passiva  m attiva : Bartlett-Van Buren un corpo in movimento, in assenza di forze esterne, si muove con velocità costante. 1 2 r 3 a Legge della dinamica: Ad ogni azione corrisponde una reazione uguale e contraria

13 Verifiche m passiva  m attiva : Bartlett-Van Buren Mantello ricco di Ferro, (  3350 kg/m 3 ) Crosta ricca di Alluminio (  2350 kg/m 3 ) d OC = 10 km D.F.Bartlett & D.Van Buren, Phys. Rev. Lett., 57, nr.1 (21-24), 1986.

14 Verifiche m passiva  m attiva : Bartlett-Van Buren Se la forza gravitazionale esercitata dal mantello sulla crosta fosse diversa da quella esercitata dalla crosta sul mantello (violazione del principio d’azione e reazione) esisterebbe una forza residua sul Centro di Massa che determinerebbe una deviazione dall’orbita classica. S(A,B) = m pA /m aA - m pB /m aB Metodo Lunar Laser Ranging  Accuratezze dell’ordine del cm nella misura dell’orbita Limite concettuale Modelli Accurati composizione Lunare Il rapporto tra M_attiva / M_passiva è lo stesso per Fe ed Al con un accuratezza di una parte su 10 12

15 Verifiche m passiva  m attiva : Bartlett-Van Buren B - centro di massa O - centro geometrico a = raggio lunare Indice a ==> crosta Indice b ==> mantello OB=s OC=t Forza della crosta sul mantello F b = [-(4  /3)G t  a ] V b  b (  a -  b ) tV b = M s Se e’ violato il 3 o principio della dinamica allora S(a,b) = 0 e sul centro di massa sarebbe applicata la forza F s =-S(a,b)[(4  /3)G  a  b M s ] / (  a -  b ) con una componente tangenziale rispetto all’orbita di F t = F s sin 14 o, che determina una variazione di velocita angolare orbitale.

16 Verifiche m passiva  m attiva : Bartlett-Van Buren F moon = G M earth M /r 2,  b F s /F moon ~ S(a,b) (M/M moon ) (r/a) 2 (s /a) (  (    s/a=0.0011, r/a=220, (M/M moon )=80 F s /F moon ~ 5 S(a,b)  Energia =1/2 F moon  r = 2  r F t  r/r =4  F t/ F moon   r 3 =cost ( legge di Keplero)  /  = 6  F t/ F moon Misure con il satellite LAGEOS dell’effetto delle maree oceaniche sul moto lunare d  dt  secondi d'arco/secolo   /  < /mese S(a,b) < (1/5) (1/6  )(1/sin14 o ) = Tenendo conto della frazione di composizione di Fe e Al ( fattore 0.08) S(Al,Fe)= S(a,b)/0.08 =

17 Materiale Didattico Lezione 2 TESTI FONDAMENTALI 1) UFF: D.V.Sivuchin, Fisica Generale per l’illustrazione della bilancia di torsione. 2) MASSA ATTIVA E PASSIVA: Leggere le idee fondamentali dei due esperimenti negli articoli originali (non viene richiesta la conoscenza dettagliata). Gli articoli sono disponibili in rete. TESINA POSSIBILE Verifiche dell’UFF

18 Verifiche UFF: Pendolo mPgmPg m P g sin   l Se il rapporto fosse diverso da corpo a corpo il periodo cambierebbe a seconda del tipo di pendolo

19 Verifiche UFF: Pendolo mPgmPg m P g sin   l Ideato da Newton ( ) Bessel ( ) Il rapporto è lo stesso per tutti i corpi esaminati con un’accuratezza di una parte su Si può usare il pendolo per ricavare informazioni sull'attrazione gravitazionale in un particolare luogo. Questo tipo di misura era servita proprio per verificare la legge di gravitazione universale: le osservazioni venivano eseguite al livello del mare e su una montagna per vedere se l'accelerazione di gravità diminuiva come previsto da Newton.

20 Verifiche UFF: Eotvos F grav =g m P r RTRT  

21 Verifiche UFF: Eotvos Deviazione del filo a piombo Se il rapporto variasse la deviazione dipenderebbe dal corpo utilizzato come massa del filo a piombo r RTRT 

22 Verifiche UFF: Eotvos Deviazione del filo a piombo r RTRT   =1.7 x a 45 0 di latitudine

23 Verifiche UFF: Eotvos r N TERRA S S F gravitazionale N Zenit F risultante  F centrifuga LABORATORIO

24 Verifiche UFF: Eotvos S N l  2 (r = R T cos 

25 Verifiche UFF: Eotvos S N l  2 r  z Equilibrio della bilancia lungo l’asse verticale

26 S N l  2 z Verifiche UFF: Eotvos Equilibrio dei pesi (ipotesi di bracci uguali)

27 Verifiche UFF: Eotvos Equilibrio dei pesi (ipotesi di bracci uguali) Se i due corpi avessero rapporti diversi tra massa inerziale e gravitazionale passiva, la relazione di equilibrio potrebbe essere verificata solo se le due masse inerziali fossero diverse. Questo implicherebbe però che le due forze centrifughe sarebbero diverse e quindi le diverse componenti orizzontali indurrebbero una torsione intorno all’asse verticale  l

28 Verifiche UFF: Eotvos S N l  2 I risultati nulli ottenuti da Eotvos ci dicono che il rapporto tra massa inerziale e massa gravitazionale è lo stesso per tutti i corpi a meno di qualche parte per miliardo

29 Verifiche UFF: Eotvos Equilibrio dei pesi (ipotesi di bracci uguali) Se i due corpi avessero rapporti diversi tra massa inerziale e gravitazionale passiva, la relazione di equilibrio potrebbe essere verificata solo se le due masse inerziali fossero diverse.  Rotazione intorno all’asse verticale l

30 S N l  2 r  z Verifiche UFF: Eotvos

31 S N l  2 Ruotando il sistema di si dovrebbe invertire il segno del momento e si otterrebbe una rotazione dalla parte opposta

32 Verifiche UFF: Eotvos

33 Verifiche UFF: Dicke Roll-Kroktov e Dicke utilizzarono lo stesso apparato in un “contesto differente” misurando la proporzionalità tra Massa Inerziale e Massa Gravitazionale Passiva con un’accuratezza di F g1 F in1 F g2 F in2 2 Le componenti discusse sopra, dovute al campo gravitazionale terrestre ed alla forza centrifuga ad una data latitudine sono costanti nel tempo. Sono considerate le forze dovute al sole F g e la forza di inerzia traslatoria F in collegata al moto accelerato del centro della terra verso il sole g sole

34 Verifiche UFF: Dicke P.G. Roll, R.Kroktov and R.H.Dicke, Ann. Phys.(N.Y.) 26, , (1964). Realizzato all’ Università di Princeton 1 F g1 F in1 F g2 F in2 2 g sole

35 Verifiche UFF: Dicke Se la bilancia è sospesa nel suo centro di massa: 1 F g1 F in1 F g2 F in2 2 g sole h1h1 h2h2

36 Verifiche UFF: Dicke 1 F g1 F in1 F g2 F in2 2 g sole

37 Verifiche UFF: Dicke 1 F g1 F in1 F g2 F in2 2 Vantaggio: Si evita la rotazione dell’apparato Svantaggio: Il campo del sole è più piccolo (0.59 cm/s 2 contro 1.67 cm/s 2 ) Rumori: Rumore Sismico, Gradienti termici, Rumore Gravitazionale, Accoppiamento con il campo magnetico esterno Accuratezza sul rapporto: (0, ) x

38 Verifiche UFF: Dicke Riassunto del metodo - Se vale WEP, tutto l’apparato cade verso il Sole: assenza di torsione del filo -Violazione di WEP: Au è accelerato diversamente da Al e l’effetto ha una periodicità giornaliera.

39 Verifiche UFF: Dicke

40

41 Accorgimenti sperimentali - Il triangolo è equilatero (6 cm) e la misura remotizzata per limitare gli accoppiamenti gravitazionali spuri - L’intensità luminosa è bassa per limitare l’effetto di pressione di radiazione - La luce riflessa modulata a 3000 Hz dal moto del filo - Il segnale del fotomoltiplicatore viene demodulato ed utilizzato per applicare un segnale quasi statico al condensatore per bloccare la rotazione (sistema controreazionato) - Il segnale d’errore di controreazione è analizzato nel dominio di Fourier per estrarre la periodicità di 24 ore. Massimizzazione del segnale AlAu -Numero di Neutroni/Numero di Protoni K cin eletr. livello K/Massa a riposo eletr Energia elettrostatica Nuclei/Massa Atomica Specifiche dell’apparato - Sensibilità angolare rad - Stabilità in temperatura  T < K - Assenza di impurezze di ferro (accoppiamento con il H Terra ) -Inomogeneità nel gas: se  t ~ g/day ==>  F ~ g cm /s 2

42 Verifiche UFF: Dicke

43

44 Verifiche UFF: Braginsky & Panov 1 F g1 F in1 F g2 F in2 2 V.B.Braginsky and V.I.Panov Sov. Phys. JEPT 34, (1972) Realizzato all’Università di Mosca Accuratezza: 1 parte su

45 Verifiche UFF: Braginsky & Panov Vista dall’alto Pt Al Miglioramenti 1) Fibra più lunga 2) Disposizione delle masse Limite sperimentale della tecnica raggiunto ? La rimandiamo a più tardi, quando avremo i mezzi analitici per farlo! Un’analisi del rumore intrinseco dell’apparato è necessaria. La rimandiamo a più tardi, quando avremo i mezzi analitici per farlo!

46 Verifiche UFF: Adelberger et al. Phys Rev. D 50 (1994) 3614 Pendolo di torsione ben simmetrizzato con masse intercambiabili e a geometria variabile per anullare i momenti di multipolo di ordine superiore

47 Verifiche UFF: Adelberger et al. Compensatori dei gradienti gravitazionali a)compensa Q 21 b)b) compensa Q 22

48 Verifiche UFF: Adelberger et al. Risultati ottenuti in funzione della sorgente di campo gravitazionale utilizzata Terra  ~ Centro Galattico  ~ Sorgente di laboratorio  ~

49 Verifiche UFF: STEP Barlier et al.  STEP (“Satellite Test for the Equivalence Principle”) Accuracy Goal: 1 parte su STEP will compare the accelerations of four pairs of test masses in orbit. The free-floating test masses will be isolated from disturbances inside a cryogenic dewar with superconducting shielding and ultra-high vacuum, and their accelerations will be measured by a superconducting circuit using a quantum interference device (SQUID) for the best sensitivity. The dewar is part of a "drag- free" satellite, i.e. a satellite compensated for drag by proportional thrusters, using the test masses as reference. This technique reduces low-frequency acceleration disturbances from air drag, magnetic field, and solar pressure to an acceptable level. Gravity gradient disturbances are eliminated by precise placement of the mass centers on each other. The mission will be flown in a near-circular sun-synchronous orbit, to minimize temperature variations, for period of six months. The best altitude is approximately 550km.

50 Verifiche UFF: Eotvos e la V o Forza Una ri-analisi dell’esperimento originale di Eotvos sviluppata da E. Fischbach e dai suoi collaboratori [Phys. Rev Lett. 56, 3-6,(1986)] mostrò una suggestiva deviazione da UFF. o La violazione di UFF viene interpretata in termini dell’esistenza della 5 o interazione fondamentale che dipenderebbe dalla composizione degli oggetti. Torneremo su questo argomento prossimamente!

51 Gravitazione Classica: le forze di marea

52 Le forze di marea Teoria Newtoniana Sviluppando in serie attorno all’origine quindi dove Se l’origine coincide con il centro di massa D k =0 MonopoloDipoloQuadrupolo

53 Le forze di marea Esempio semplice: campo a simmetria sferica generato dalla massa M Componente dell’accelerazione lungo l’asse z della massa di prova, posta nel punto di coordinate (0,0,z), nel sistema di riferimento in caduta libera (ovvero l’origine è accelerata rispetto a Terra di GM/r 2 ) Supponendo la particella disposta in (0,y,0) o in (x,0,0) possiamo ricavare le altre componenti della forza di marea   potenziale corrispondente a questo campo di forza roro z x y m M R

54 Le forze di marea Il potenziale associato alla forza di marea + quallo dovuto alla gravitazione Terrestre sarà: V(h,  ) = mgh - [(G M L m) /r o 3 ] [ (3 cos 2  - 1)/2] Alta marea   0,  Bassa marea   Assumendo il sistema in equilibrio V(h,  ) = = costante gh - [(G M L ) /r o 3 ] [ (3 cos 2  - 1)/2] = costante  h = h(  0) – (  ) = (3/2) (GM L R 2 /gr o 3 ) L’accelerazione gravitazionale dovuta alle forze autogravitanti sulla superficie della Terra si può riscrivere intoducendo la densità  della Terra di massa M T : g = G {M T /R 2 }= G {[(4/3)  R 3  ]/R 2 }=G (4/3)  R  La deformazione di una sfera, tenuta insieme solo dalle forze auto gravitanti, è  h/R = (9/8) (M L /  r o 3  ) Indipendente dalle dimensioni dalle dimensioni della massa m 2R MLML Consideriamo una piccola sfera di massa m posta sulla Terra, che risente anche del campo delle forze di marea prima calcolato. Terra Luna

55 Le forze di marea Effetto di torsione Poniamo una bilancia di torsione in un punto dello spazio ove è presente un campo gravitazionale a simmetria sferica. La componente del momento torcente lungo l’asse x è I kl è il generico elemento del tensore momento d’inerzia della bilancia Il momento torcente mareale cambia localmente iI momento angolare della bilancia. L’accelerazione angolare che ne risulta, è una misura locale dell’effetto mareale Per un campo gravitazionale generato da una qualunque distribuzione di masse

56 Le forze di marea nel vuoto Indichiamo con F k il campo di forze Newtoniano generato da una qualunque distribuzione di masse. Se la particella è in (x,y,z), nel caso generale le forze di marea possono essere espresse Nel vuoto il campo f k è solenoidale

57

58

59

60

61 Le forze di marea Sensibilità tipiche in accelerazione differenziale m/s -2 su metro Misure Indipendenti dei 3 componenti forniscono un test della legge quadratica inversa Il Gradiometro triassiale Superconduttore di Paik Un metodo alternativo per la misura dei gradienti di campo gravitazionale


Scaricare ppt "Lezione II Esperimenti sulla massa classica. Riassunto Lezione Precedente un corpo in movimento, in assenza di forze esterne, si muove con velocità costante."

Presentazioni simili


Annunci Google