La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

RELATORI: Sebastiano Greco, Danilo Meli, Lucio Cantone anno accademico 2009/10 Dipartimento di Matematica e Informatica F AST F OURIER T RANSFORM.

Presentazioni simili


Presentazione sul tema: "RELATORI: Sebastiano Greco, Danilo Meli, Lucio Cantone anno accademico 2009/10 Dipartimento di Matematica e Informatica F AST F OURIER T RANSFORM."— Transcript della presentazione:

1 RELATORI: Sebastiano Greco, Danilo Meli, Lucio Cantone anno accademico 2009/10 Dipartimento di Matematica e Informatica F AST F OURIER T RANSFORM

2 I NDICE DEGLI ARGOMENTI Numeri complessi Onde armoniche Ortogonalità di funzioni Polinomi trigonometrici Serie di Fourier Trasformata di Fourier Fast Fourier Transform (FFT) Applicazioni ed esempi

3 I NTRODUZIONE AI N UMERI C OMPLESSI Girolamo Cardano e Rafael Bombelli introdussero i numeri complessi per descrivere le soluzioni a questo tipo di equazioni che a quei tempi erano considerate impossibili poiché non ammettevano soluzioni nell'insieme dei numeri reali. Intorno alla metà del XVI secolo, i matematici si chiesero se le equazioni contenenti la radice quadrata di numeri negativi potessero avere soluzione.

4 LU NITÀ I MMAGINARIA Per la risoluzione di questo problema è stata introdotta ununità immaginaria tale che Si osservi che le potenze sono cicliche (di ciclo 4).

5 Reali a Immaginari ib C = R U I Complessi a+ib In questo modo si poteva ampliare linsieme R con un altro insieme che contenesse i numeri immaginari. LI NSIEME C

6 D EFINIZIONE N UMERO C OMPLESSO Definiamo numero complesso una coppia ordinata di numeri reali (a, b). Da esso deriva la forma algebrica di un numero complesso: Lelemento a si chiama parte reale, lelemento b si chiama parte immaginaria. Il numero complesso denotato dalla lettera è formato dalla coppia (0,1).

7 LI NSIEME C Valgono in C le seguenti proprietà: Dato si definisce complesso coniugato di z il numero dato da Dato si definisce modulo si z il numero

8 O PERAZIONI F ONDAMENTALI Dati due numeri complessi si ha: se

9 Pertanto, se: ESEMPI

10 I NTERPRETAZIONE GEOMETRICA DEI NUMERI COMPLESSI. E possibile unaltra rappresentazione dei numeri complessi utile per trovare le radici n-esime di un numero complesso. Dato un sistema di riferimento cartesiano, indicando con lasse delle x lasse reale e con lasse delle y lasse immaginario, essendo il numero complesso una coppia ordinata di numeri vi è una corrispondenza biunivoca tra i numeri complessi e i punti del piano.

11 Sia e P il punto del piano che lo rappresenta (con PO), indichiamo con la misura di, si ha: Il numero è il modulo (indicato anche con ) e argomento di z. RAPPRESENTAZIONE GEOMETRICA DEI NUMERI COMPLESSI.

12 F ORMA T RIGONOMETRICA Possiamo allora ricava la seguente forma trigonometrica di un numero complesso: E' importante notare che l'argomento delle funzioni seno e coseno può essere incrementato di, ottenendo ancora lo stesso numero complesso.

13 F ORMULA DI D E M OIVRE Per la potenza n-esima di z si ha la formula di De Moivre : Tale formula è fondamentale per determinare la radice n-esima di un numero complesso. Vogliamo trovare quei complessi se esistono, tali che:

14 R ADICI N - ESIME (1) Si ha che esiste un unico e tali che: Pertanto per, lequazione ammette delle soluzioni che si calcolano da: Sembrerebbe che ci siano infinite radici n-esime, in realtà quelle a due a due distinte sono n, date dalla formula precedente con.

15 E SEMPIO

16 RADICE N-ESIME (2) Un caso particolare è dato dalle radici n-esime dellunità. Esse sono indicate con e sono date da: Esse si dispongono nel piano complesso lungo la circonferenza unitaria, ai vertici di un poligono regolare con n lati che ha un vertice in (1,0).

17 F ORMA ESPONENZIALE DEI N UMERI C OMPLESSI I numeri complessi si possono rappresentare anche in forma esponenziale: dove è detta Formula di Eulero. Essa ci mostra una profonda relazione fra le funzioni trigonometriche e la funzione esponenziale complessa.

18 F ORMULE DI E ULERO La formula di Eulero permette anche di intepretare le funzioni seno e coseno come semplici varianti della funzione esponenziale. Sommando o sottraendo le formule di Eulero e risolvendo le equazioni ottenute sia per il seno sia per il coseno.

19 P OTENZA C OMPLESSA Dato un numero complesso chiameremo potenza di base ed esponente il numero complesso: Questa equazione contiene come caso particolare la Formula di Eulero. Hanno significato le seguenti:

20 F ORMULA DI E ULERO È da notare che la formula di Eulero dà origine ad un'equazione considerata tra le più affascinanti della matematica (nota come identità di Eulero), in quanto mette in relazione tra loro i cinque numeri più importanti ed utilizzati (e, i, π, 1, 0)

21 A PPLICAZIONI In matematica: – Teoria dei numeri – Integrali impropri – Equazioni differenziali – Frattali. In fisica: – Dinamica dei fluidi – Meccanica Quantistica – Relatività.

22 A PPLICAZIONI : A NALISI DEI SEGNALI I numeri complessi vengono utilizzati nell'analisi dei segnali e in tutti i campi dove si trattano segnali che variano sinusoidalmente nel tempo, o anche semplicemente periodici. Il valore assoluto di |z| è interpretato come la ampiezza del segnale mentre l'argomento di z è interpretato come la fase. I numeri complessi rendono possibile anche l'analisi di Fourier, che rende possibile scomporre un generico segnale tempo-variante in una somma di infinite sinusoidi: ogni sinusoide è scritta come un singolo numero complesso dove ω è la pulsazione della sinusoide e z la sua ampiezza.

23 L IMPORTANZA DELLA TEORIA DI F OURIER Le funzioni di una variabile reale f(t), una volta descritte da una legge matematica (una formula, un algoritmo) il modo più comune di memorizzarle è compilare una tabella con colonne. La prima colonna contiene il valore della variabile indipendente t, e la seconda il valore della variabile dipendente f(t). Questa filosofia di rappresentazione della funzione si chiama analisi nel dominio del tempo ma non è lunica. Se consideriamo i polinomi essi non sono molto adatti per lapprossimazione. Essi oscillano e vanno allinfinito per grandi valori assoluti dellargomento x, ma tra altri insiemi di funzioni che approssimino ogni funzione continua in un intervallo chiuso vi sono i polinomi trigonometrici. Tali funzioni si calcolano facilmente, mediante serie rapidamente convergenti; le loro derivate sono ancora seni e coseni e così anche i loro integrali. Hanno anche proprietà di ortogonalità e di periodicità che non hanno invece i polinomi. Lapprossimazione mediante polinomi trigonometrici è nota come approssimazione di Fourier.. Una possibile alternativa è offerta quindi dalla Teoria di Fourier il cui nocciolo fondamentale sono le funzioni armoniche: seno e coseno. In oltre lerrore di tale approssimazione è dato in termini della funzione stessa e non dipende, come nel caso dei polinomi, dalle sue derivate di alto ordine.

24 O NDE ARMONICHE

25 Le frequenze armoniche sono l'insieme delle frequenze multiple della frequenza base di un'onda. Quindi, per esempio, un'onda che non sia perfettamente sinusoidale che abbia la frequenza di 100 Hz sarà composta, di fatto, da una frequenza fondamentale, cioè una sinusoide da 100 Hz, e da numerosissime frequenze armoniche, da 200, 300, 400, 500 Hz, e così via, con ampiezze variabili. E possibile rappresentare delle funzioni o dei segnali come sovrapposizione di onde fondamentali (armoniche). O NDE ARMONICHE (2)

26 O NDE ARMONICHE (3)

27 F UNZIONI COME VETTORI I vettori sono oggetti assai familiari che tutti abbiamo conosciuto durante precedenti corsi di studi poiché sono utilissimi per descrivere forze, spostamenti, velocità ecc. Se la funzione è un vettore quindi gli spazi funzionali (insiemi di funzioni) sono anche spazi vettoriali. Anche per le funzioni possono essere definite operazioni analoghe a quelle definite per i vettori. Per questo motivo possiamo dire che le funzioni sono assimilabili a dei vettori.

28 Di particolare importanza in questo contesto è loperazione di prodotto interno definita per i vettori ordinari. F UNZIONI A QUADRATO SOMMABILE Consideriamo le funzioni reali definite per ogni valore reale che abbiano però la proprietà di essere tali per cui esse stesse elevate al quadrato formino un'area rispetto all'asse delle x che abbia un valore finito. Ricordiamo che tale area è l'integrale del quadrato della funzione: Se questo integrale converge tali funzioni sono dette a quadrato sommabile e costituiscono uno spazio vettoriale perché su esse sono definibili le solite operazioni (addizione, sottrazione e moltiplicazione per uno scalare).

29 Mentre i coefficienti di Fourier e si possono definire formalmente per ogni funzione per la quale ha senso considerare gli integrali che forniscono i loro valori, se la serie così definita converga effettivamente alla f(x) dipende dalle proprietà specifiche di tale funzione. La conclusione più semplice si ha quando la f(x) è a quadrato sommabile; in tal caso cioè si ha la convergenza nella norma dello spazio L 2 dove lo spazio L 2 è lo spazio infinito-dimensionale delle successioni di numeri reali (o complessi) a quadrato sommabili. I MPORTANZA DELLE FUNZIONI A QUADRATO SOMMABILE

30 D EFINIZIONE DI O RTOGONALITÀ Le funzioni di una famiglia si dicono mutualmente ortogonali rispetto ad un prodotto scalare definito per quello spazio se: Un sistema di infinite funzioni definite in [a,b] e ivi generalmente continue e integrabili, si dice ortogonale se per qualsiasi coppia di indici k e l fra loro distinti si ha:

31 LI NSIEME DELLE FUNZIONI TRIGONOMETRICHE Consideriamo linsieme B delle seguenti funzioni: Per n=0 si ha cos 0x=1 e sin 0x=0. Una qualunque combinazione lineare di funzioni di B produce una funzione periodica di periodo 2π. La teoria delle serie di Fourier si occupa sostanzialmente del problema inverso: data una funzione periodica di periodo 2π, ci si chiede se essa può essere espressa come combinazione lineare di funzioni di B.

32 P OLINOMI T RIGONOMETRICI La loro base è costituita dalla famiglia delle funzioni trigonometriche: Tali funzioni sono a due a due ortogonali in un intervallo di ampiezza e pertanto sono linearmente indipendenti, quindi formano una base.

33 P OLINOMI T RIGONOMETRICI ( RELAZIONI DI O RTOGONALITÀ )

34 P OLINOMI T RIGONOMETRICI (2) Analogamente si ha lortogonalità in e, generalmente, su ogni intervallo di ampiezza Cambiando scala lungo lasse introducendo il fattore, le funzioni sono ortogonali su. Inoltre, la sostituzione di con non inficia lortogonalità.

35 dove abbiamo indicato con, anziché con a 0, il coefficiente di cos(0x) mentre il coefficiente di sin(0x) non ha interesse perché sin(0x) = 0. Ci si chiede se le funzioni di B costituiscono una base per scrivere una generica funzione periodica di periodo 2π come combinazione lineare, magari infinita (serie) di funzioni appartenenti a B, cioè: In questo modo, i coefficienti a 0, a k, b k (k=1,2,…) sono numeri complessi che dipenderanno da come costruiremo la F(x). S ERIE DI F OURIER

36 Possiamo usare lortogonalità nellespansione formale di F(x). Per far questo, determiniamo tali coefficienti moltiplicando formalmente entrambi i termini della F(x) sia per cos(lx) che per sen(lx). : Integrando ambo i membri ed utilizzando la proprietà distributiva, si ha: S ERIE DI F OURIER (2)

37 Distinguendo i casi per: k=l0k=l=0k l riferiti alle relazioni di ortogonalità seno coseno viste precedentemente, si dimostra che i coefficienti di Fourier in forma trigonometrica sono: S ERIE DI F OURIER (3)

38 Gli a l, b l calcolati in tal modo si possono estendere ad un sistema generale di funzioni ortogonali dove ω(x) e una funzione peso su (-1,1), ovvero una funzione non negativa e integrabile in (-1,1). Se: allora: sono ancora i coefficienti di Fourier S ERIE DI F OURIER (4)

39 Come caso particolare possiamo prendere un sistema di polinomi algebrici di grado k, {p k,k=0,1,…}, mutualmente ortogonali su (-1,1) rispetto ad ω. Ovvero come prima: Poniamoedovesono, rispettivamente, il prodotto scalare e la norma per lo spazio di funzioni Per ogni funzione la serie è detta serie di Fourier (generalizzata) di F ed è il coefficiente k-esimo di Fourier. S ERIE DI F OURIER (5)

40 S ERIE DI F OURIER ( IN FORMA COMPLESSA ) La serie di Fourier è una rappresentazione di una funzione periodica (che in una accezione con caratteristiche di semplicità si chiede abbia periodo 2π) mediante una somma di funzioni periodiche. Grazie alla formula di Eulero, la precedente serie può essere espressa equivalentemente mediante funzioni seno e coseno.

41 in particolar modo se, la serie di Fourier è espressa come: S ERIE DI F OURIER ( IN FORMA COMPLESSA ) (2) dove e

42 Se generalizziamo per una funzione di periodo L, possiamo allora scrivere che: dove i coefficienti c k sono dati dalla relazione: In cui la condizione di ortogonalità è: S ERIE DI F OURIER ( IN FORMA COMPLESSA ) (3)

43 L A TRASFORMATA DI F OURIER ( TOPICS ) Una funzione periodica puo essere espressa come somma di seni e/o coseni di differenti frequenze e ampiezze. (Serie di Fourier). Una funzione di durata finita puo essere espressa come integrale di seni e/o coseni, moltiplicati per opportune funzioni peso (Trasformata di Fourier). Dato che tratteremo funzioni di durata finita (le immagini), ci interesseremo della Trasformata di Fourier.

44 T RASFORMATA DI FOURIER (2) Questa rappresentazione coinvolge le armoniche complesse ovvero le funzioni con numeri donda: Linsieme di questi numeri donda è detto lo spettro dei numeri donda che è un insieme discreto cioè consiste di numeri separati ad ognuno dei quali corrisponde unarmonica nellespansione (1.1) con unampiezza complessa data dalla (1.2). Sia f (x) definita nellintervallo - L < x < L. essa può essere rappresentata dalla sua serie di Fourier in forma complessa: dove:

45 Allora, per L molto grande lo spettro diviene denso e molto piccolo. Al limite, per la somma diventa un integrale e quindi: dove è la distanza tra due punti vicini rappresentanti i numeri donda nello spettro. Pertanto la (1.1) può essere scritta come: Lo spettro discreto diventa continuo per e ovvero ogni armonica ha ampiezza nulla. Le (2.1) e (2.3) sono le trasformate di Fourier di cui la (2.1) è quella diretta e la (2.3) quella inversa. Per semplicità, sia f (x) nulla al di fuori dellintervallo [a,b] e introduciamo: che in realtà si estende ad [a,b]. Se L è sufficientemente grande possiamo riscrivere la (1.2) nella forma:

46 Algoritmo ottimizzato per il calcolo della trasformata discreta di Fourier E importante per una grande varietà di applicazioni, tra cui: Trattamento dei segnali digitali Soluzione di equazioni differenziali e derivate parziali Algoritmi per moltiplicare numeri interi di grandi dimensioni prodotto di due trasformate, nel senso che una trasformata segue laltra. Lanti trasformata di Fourier e uguale alle DFT, ma con esponente di segno opposto e 1/N fattore, qualsiasi algoritmo FFT può essere facilmente invertito. FFT (F AST F OURIER T RANSFORM )

47 Data una n-pla di coefficienti di Fourier a 0, a 1, a 2, …., a M, a M+1 e possibile verificare che se li volessimo calcolare tramite un calcolo diretto, tale calcolo implica circa M 2 moltiplicazioni ed M 2 addizioni, per cui un algoritmo prenderebbe tempo O(M 2 ), date le M 2 operazioni. E possibile utilizzare un bound più stretto, fino ad arrivare ad una complessità dellordine di MlgM,facendo uso della fattorizzazione cioè M può essere fattorizzato come: M = G * H dove per risultato di tale fattorizzazione avremo circa M (G + H) operazioni al posto delle M 2 operazioni precedenti. Se M = m 1 * m 2 * m 3 * … * m k allora il numero di operazioni sarà: M(m 1 + m 2 + m 3 + … + m k )

48 Nel caso più favorevole, cioè che M sia una potenza di 2 M = 2 k si avranno M(2k) operazioni, dove k = lg 2 M. Quindi, se M e molto grande, si avrà un grande guadagno perché il numero delle operazioni da M 2 si ridurrà a MlgM. Esempio: Campionamento a 1000 punti 1000 moltiplicazioni che richiedono un tempo piu elevato rispetto alle addizioni. Se il tempo di esecuzione per una moltiplicazione e ad esempio 10 millesimi di secondo, saranno necessari 100 secondi per svolgere solamente le moltiplicazioni, il che rende impossibile lanalisi di una forma donda in tempo reale.

49 Sia c k il generico coefficiente da calcolare. Il cuore del metodo e scrivere i due indici k e p in modo opportuno. Dividiamo k per G : k = k 1 G + k 0 e dividiamo p per H: p = p 1 H + p 0 con: k 0 < G k 1 < H p 0 < H p 1 < G

50 Si ha: dove abbiamo usato il fatto che: N.B. La doppia somma copre gli stessi numeri della somma originale.

51 Ci sono H termini in questa somma, uno per ogni p 0. Poniamo: Quindi: Un conteggio delle operazioni mostra che sono proporzionali a GH(G + H).

52 La Trasformata di Fourier mantiene un ruolo cardine nell image processing, anche se altre trasformate oggi sono in uso in molte applicazioni. Abbiamo visto che la Trasformata di Fourier di una funzione continua f(x) di variabile reale x e definita come: Con u frequenza (u = 2π/T) e T periodo. Inoltre, dato che: La F(u) e composta dalla somma di infiniti termini sinusoidali e cosinusoidali, ed ogni valore di u determina la frequenza della coppia seno-coseno corrispondente. L A TRASFORMATA DI F OURIER ALLE IMMAGINI

53 La anti trasformata e definita come: Ovviamente la trasformata e la anti trasformata esistono se f(x) e continua ed integrabile e se F(u) e integrabile. Estendendo al caso bidimensionale (le immagini), definiamo: Spettro: Fase: Densità spettrale:

54 La trasformata della sequenza bidimensionale f(x,y) e: con: u = 0, …, M-1 e v = 0, …, N-1 Naturalmente u e v sono gli indici assi frequenze discretizzati, mentre M ed N sono le dimensioni, in pixel, della immagine. La anti trasformata invece e: con: x = 0, …, M-1 e y = 0, …, N-1

55 Nel caso di immagini campionate in una griglia quadrata (M = N), la trasformata e la anti trasformata saranno: Inoltre, il campionamento della f(x,y) ha luogo in una griglia bidimensionale con passi Δx e Δy.

56 Esempio di calcolo della DFT… Per provare quanto detto finora, consideriamo il caso di una sola variabile x, e consideriamo la f(x) nel seguente modo: La nostra funzione f(x) e campionata a partire da x 0 =0.25, ed otterremo gli N=5 campioni.

57 Andando ad applicare la formula: otterremo i valori degli N=5 campioni della trasformata:

58 Proseguendo…

59 Ricapitolando, tutti i valori della funzione f(x) contribuiscono per la costruzione dei vari campioni della trasformata F(x). In modo del tutto analogo, tutti i campioni della trasformata F(x) contribuiscono, in fase di antitrasformazione, a ciascuno dei valori della funzione f(x). I campioni della trasformata F(x) sono generalmente complessi, per cui ognuno ha sia modulo che fase, pertanto dallesempio con i valori calcolati nelle slides precedenti, avremo: E cosi via dicendo per i restanti valori degli N=5 campioni.

60 Nel caso bidimensionale (x,y), un impulso che e approssimato da un piccolo cerchio bianco circoscritto da un rettangolo su fondo nero, in una immagine di 200 x 200 pixel: I differenti livelli di grigio nella immagine di intensita dello spettro evidenziano le ampiezze decrescenti dei diversi lobi. Esempi

61 Qui abbiamo la trasformata di una immagine di 200 x 200 pixel e 256 livelli di grigio: La fase (fig.3) contiene linformazione relativa al dove le strutture periodiche evidenziate nella DFT sono collocate. Lampiezza (fig.2) contiene linformazione relativa al fatto che una certa struttura periodica è presente nellimmagine.

62 Utilizzo della Trasformata di Fourier Buona parte delle analisi effettuate sulle immagini vengono effettuate nel dominio spaziale. Se vogliamo eliminare informazioni legate ad errori periodici e necessario operare nel campo delle frequenze, prima di analizzare limmagine stessa. La trasformata di Fourier (FFT) ci permette di convertire limmagine da analizzare nel campo delle frequenze. Una immagine puo avere un rumore periodico, visibile ad esempio sotto forma di un banding causato da alcuni processi di conversione in formato digitale, o dal sensore CCD.

63 Nel campo delle frequenze, tale rumore ricorrente si riduce ad un limitato set di alte frequenze spaziali. E possibile impiegare delle tecniche o particolari algoritmi per isolare e rimuovere le frequenze indesiderate dalla immagine. Una volta eliminate tali frequenze, e convertendo limmagine FFT verso il dominio spaziale (antitrasformata FFT), otterremo una nuova immagine in cui il rumore pediodico risultera ridotto, se non eliminato, salvaguardando le altre informazioni.

64 E SEMPIO SULL UTILIZZO DELLA T RASFORMATA DI F OURIER. Prendiamo come esempio la seguente immagine: Nellarea ingrandita possiamo notare la presenza di un effetto banding verticale, che maschera in parte linformazione originaria presente.

65 Convertendo nel dominio delle frequenze la regione ingrandita Possiamo notare: Due bracci verticali ed orizzontali Una zona piu densa al centro Inoltre, in corrispondenza del braccio orizzontale: Una zona piu scura sul bordo destro e sinistro

66 Passando ad una rappresentazione 3D della FFT, otteniamo il seguente grafico, possiamo osservare meglio le peculiarita della superficie calcolata.

67 1.Mascheriamo le zone che vogliamo utilizzare (poligoni bianchi) in corrispondenza dei due bracci (verticali ed orizzontali) e delle due zone piu esterne. 2.Calcoliamo la trasformata inversa di Fourier. Limmagine a destra non presenta piu leffetto di banding verticale, e le informazioni sono piu chiare e leggibili.

68 Ecco leffetto ottenuto grazie allutilizzo della FFT:

69 Puo accadere che si vogliano invece mantenere le informazioni legate al rumore periodico e quantomeno alle informazioni legate alle alte frequenze presenti nell immagine. La procedura e la stessa del precedente esempio, solo che al posto di mascherare le informazioni relative alle frequenze periodiche, si utilizzera una maschera per nascondere le informazioni presenti nell immagine.

70 Qui e possibile vedere come lo spettro di Fourier evidenzia la chiara presenza di un errore periodico rappresentato da una serie di bande semi-orizzontali piu chiare. Mascherando la parte centrale ed effettuando in procedimento inverso otteniamo una immagine in cui sono presenti solo le informazioni legate al rumore periodico.

71 Nel caso di digitalizzazione di immagini stradali, e possibile vedere come le strade siano piu visibili nella immagine di destra…

72 M ANIPOLAZIONE DELLO SPETTRO Le circonferenze (dal centro) racchiudono il 90, 93, 95, 99 e il 99,5% della potenza spettrale totale.

73

74

75

76

77

78

79

80

81

82

83 C URIOSITA … Motivo della presenza delle due bande verticali ed orizzontali sullo spettro di Fourier di una immagine: La FFT calcola la trasformata di Fourier di segnali 2D periodici: Lalgoritmo periodicizza limmagine presa in input, replicandola in tutte le possibili posizioni adiacenti senza sovrapposizione in modo da piastrellare tutto il piano x-y. La FFT calcola la trasformata di Fourier di questa super immagine periodicizzata che si estende fino ad infinito in tutte le direzioni del piano. Dato che limmagine iniziale non e un segnale periodico, e questa sua replicazione in tutte le posizioni adiacenti genera dei salti di intensita molto forti ai bordi, la dove il bordo destro di congiunge al bordo sinistro, ecc. Linsieme di queste discontinuita di salto distribuite su una griglia ortogonale nel dominio della super immagine e in parte responsabile di tale effetto a croce. Per eliminare tale effetto bisogna apodizzare limmagine prima della FFT, esempio moltiplicandola con una funzione a campana (gaussiana), che vada a zero in modo continuo sui bordi.

84 B IBLIOGRAFIA I numeri complessi – Rosa Maria Pidatella (Dispense) Wikipedia – Lenciclopedia libera Analisi I - Carlo Miranda Dodero, Baroncini, Manfredi – Elementi di Matematica 3


Scaricare ppt "RELATORI: Sebastiano Greco, Danilo Meli, Lucio Cantone anno accademico 2009/10 Dipartimento di Matematica e Informatica F AST F OURIER T RANSFORM."

Presentazioni simili


Annunci Google