La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

La teoria microscopica 3.1 Il moto browniano Movimento estremamente irregolare e incessante di particelle sospese in liquidi o gas. Esempio. Granelli.

Presentazioni simili


Presentazione sul tema: "La teoria microscopica 3.1 Il moto browniano Movimento estremamente irregolare e incessante di particelle sospese in liquidi o gas. Esempio. Granelli."— Transcript della presentazione:

1

2 La teoria microscopica

3 3.1 Il moto browniano Movimento estremamente irregolare e incessante di particelle sospese in liquidi o gas. Esempio. Granelli di polline immersi in una goccia dacqua; molecole di fumo in aria. Dipende dal fatto che le molecole del fluido, in continuo movimento, colpiscono ripetutamente le particelle sospese. E una prova indiretta dellesistenza delle molecole.

4 3.2 Gas perfetto e gas reali Un gas è composto da un numero grandissimo di molecole che si muovono in tutte le direzioni (moto di agitazione termica). La teoria cinetica dei gas descrive le grandezze macroscopiche che caratterizzano il gas (pressione, temperatura) mediante lo studio statistico delle grandezze microscopiche (energia cinetica, velocità) delle singole molecole. La teoria è basata sulle seguenti ipotesi (gas perfetto): 1.il gas è costituito da molecole che si muovono secondo le leggi della meccanica 2.Le molecole non si attraggono tra loro 3.Il volume occupato dalle molecole è trascurabile rispetto al volume del recipiente Per i gas reali tali ipotesi non sono valide (equazione di stato di Van der Waals).

5 3.2 La pressione del gas perfetto Utilizzando le leggi della meccanica (meccanica statistica), è possibile mettere in relazione la pressione con le grandezze medie che caratterizzano il moto di ciascuna molecola (energia cinetica, velocità) Ipotizzando urti perfettamente elastici (si conservano quantità di moto ed energia cinetica) contro le pareti del recipiente, si ottiene dove,N = numero di molecole K media = energia cinetica media di una molecola = La pressione che esercita un gas sulle pareti del recipiente è dovuta al numero di urti delle molecole contro queste pareti.

6 3.4 Il significato della temperatura assoluta Combinando la precedente relazione con lequazione di stato dei gas perfetti, si ottiene la relazione tra lenergia cinetica media K media di una molecola e la temperatura assoluta T del gas dove,k B = costante di Boltzmann = 1,381 x J/K La temperatura assoluta è la misura dellenergia cinetica media delle molecole che costituiscono il gas. Teorema di equipartizione dellenergia (molecole poliatomiche con n gradi di libertà, rotazione)

7 3.6 La distribuzione di Maxwell La distribuzione statistica delle velocità ci dice quante molecole del gas hanno un valore di v compreso tra due valori prefissati. Essa varia con la temperatura secondo landamento rappresentato in figura: quando T aumenta lascissa del massimo diventa più grande, cioè è più probabile trovare molecole con v maggiore.

8 3.7 lenergia interna Lenergia interna di un sistema fisico è lenergia complessiva di tutte le sue componenti microscopiche Lenergia interna di un gas perfetto è la somma di tutte le energie cinetiche delle particelle Lenergia interna di un gas reale è data dalla somma dellenergia cinetica e dellenergia potenziale (dovuta alle interazioni tra le molecole)

9 Grandezze micro e macro Punto di vistaRelazioni m-Mmodello Massa Pressione Volume Temperatura Energia interna Gas perfetto macroscopico numero di molecole Massa di una molecola Posizione Velocità energia cinetica Insieme di molecole puntiformi

10 3.9 Gas liquidi e solidi SolidoLiquidoGassoso forze di coesione dominanti rispetto a energia cinetica solo oscillazioni intorno a posizione di equilibrio forma e volume propri agitazione termica prevale su forze di coesione molecole scorrono le une sulle altre forma del contenitore agitazione termica vince completamente forze di coesione molecole si muovono in tutte le direzioni né forma né volume propri Le molecole sono sottoposte a due tendenze opposte: 1)forza di coesione che tende a mantenerle legate 2)movimento di agitazione termica, che tende ad allontanarle. Solido: energia interna negativa Liquido: energia interna quasi nulla Gas : energia interna positiva Stati di aggregazione: solido, liquido e gassoso (+ plasma)


Scaricare ppt "La teoria microscopica 3.1 Il moto browniano Movimento estremamente irregolare e incessante di particelle sospese in liquidi o gas. Esempio. Granelli."

Presentazioni simili


Annunci Google