La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

CONVEZIONE FORZATA. EQUAZIONI DELLO STRATO LIMITE Regime stazionario; r, c p costanti; fluido incomprimibile; assenza di generazione interna di calore;

Presentazioni simili


Presentazione sul tema: "CONVEZIONE FORZATA. EQUAZIONI DELLO STRATO LIMITE Regime stazionario; r, c p costanti; fluido incomprimibile; assenza di generazione interna di calore;"— Transcript della presentazione:

1 CONVEZIONE FORZATA

2 EQUAZIONI DELLO STRATO LIMITE Regime stazionario; r, c p costanti; fluido incomprimibile; assenza di generazione interna di calore; approssimazione di strato limite. u >> v equazione di continuità: equazione dell’energia quantità di moto lungo x: Condizioni al contorno: per y = 0 u = v = 0 T = T p (x) per y = d u = u  per y = d t T = T  (x) per x = x 0 u = u 0 (y) T = T 0 (y)

3 VISCOSITA’ TURBOLENTA E PROFILO DI VELOCITA’ 1/3 L’ipotesi di PRANDTL ( ) e VON KARMAN ( ) ovvero con velocità di attrito alla parete Da evidenze sperimentali emerge una variazione lineare del coefficiente e M con y, mentre, in prossimità della parete, l’effetto smorzante tende ad annullare le fluttuazioni.

4 VISCOSITA’ TURBOLENTA E PROFILO DI VELOCITA’ 2/3 La relazione proposta da Van Driest è la seguente: dove K = 0,40 (costante di Von Karman) e A = 0,25 (per moto su lastra piana o nei tubi) Si distinguono 3 distinte zone in funzione della distanza dalla parete: y + ≤ 5: sottostrato viscoso 5 < y + < 40: stato di transizione e M confrontabile con n y +  40: strato logaritimico

5 VISCOSITA’ TURBOLENTA E PROFILO DI VELOCITA’ 3/3 Su lastra piana, con gradiente di pressione nullo nel senso della corrente, si ha: (definizione di sforzo tangenziale) In forma adimensionale: con Dall’integrazione di questa equazione con l’equazione di Van Driest e la condizione al contorno di scorrimento nullo alla parete (u + = 0 per y + = 0) si ottiene il profilo di velocità: Il calcolo si ottiene per vie numeriche, con i risultati del grafico di seguito riportato:

6 DIFFUSIVITA’ TURBOLENTA E PROFILO DI TEMPERATURA 1/2 Le osservazioni di REYNOLDS ( ) mettono in luce che le fluttuazioni turbolente originano trasporto di calore e di quantità di moto, evidenziando la similitudine tra i due processi: e definendo l’analogia di Reynolds diventa: Dati sperimentali mostrano che in realtà: Con questa relazione e con la si ricava il profilo di temperatura turbolento Con le ipotesi di: modesti gradienti di pressione; termini convettivi trascurabili. Lo sforzo tangenziale alla parete risulta praticamente costante; ciò implica che nella regione vicina alla parete risulti costante anche il flusso termico (equazione dell’energia).

7 DIFFUSIVITA’ TURBOLENTA E PROFILO DI TEMPERATURA 2/2 La costanza del flusso termico si traduce nella: Separando le variabili ed integrando: Introducendo poi: si ottiene: L’integrazione numerica dell’equazione attraverso la formula di Van Driest e la relazione Pr t = 0,9, è graficata nella figura seguente:

8 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto laminare 1/6 Regime stazionario; fluido incomprimibile e di proprietà costanti; dissipazione viscosa trascurabile; assenza di generazione interna di calore. Con le prime 2 equazioni si ricava il campo di moto che, introdotto nella III relazione, fornisce il campo termico. La soluzione analitica proposta da BLASIUS introduce la funzione di corrente ψ(x,y) definita dalle relazioni:

9 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto laminare 2/6 Con la funzione di corrente, l’eq. di continuità è automaticamente soddisfatta; l’equazione della quantità di moto diventa: Si opera un cambio di variabili: Ottenendo le espressioni seguenti per u e v: trasformando l’equaz. della q.d.m. in un’equaz. differenziale ordinaria, del III ordine, non lineare: VARIABILE DI SIMILITUDINE

10 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto laminare 3/6 Le condizioni al contorno si scrivono: ovvero: La soluzione si ottiene attraverso metodi numerici. Lo spessore dello strato limite d (dove u/u  = 0,99) si ottiene per h = 4,92 ed è pari a: mentre il gradiente di veolcità trasversale è: da cui si ottiene l’espressione dello sforzo tangenziale alla parete: quindi e il coefficiente di attrito locale:

11 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto laminare 4/6 EQUAZIONE DELL’ENERGIA Si ipotizza una soluzione del tipo: e e si sostituisce nell’equazione dell’energia Introducendo la variabile adimensionale: con le condizioni al contorno Confrontandola con lasi evidenzia come per Pr  1 le equazioni risultino identiche gas, vapore acqueo, acqua liquida ad elevate T e P Nel caso più generale (Pr ≠ 1) si può ricavare il gradiente di temperatura alla parete:

12 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto laminare 5/6 Dal gradiente di temperatura si ricava il coefficiente locale di scambio termico: quindi Attraverso I valori locali dello sforzo tangenziale: si può ottenere il valore medio dello sforzo su una estensione L: il coefficiente di attrito medio: Il coefficiente di scambio termico medio:

13 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto laminare 6/6 Si può esprimere una relazione che leghi i coefficienti di attrito e di scambio termico: Definendo il numero di Stanton: risulta: ovvero: (analogia di Reynolds-Colburn) Dalla misura del coefficiente di attrito si risale al coefficiente di scambio termico.

14 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto turbolento 1/2 Il moto su lastra piana assume caratteristiche diverse in funzione del numero di Reynolds: Moto laminare transizione Moto turbolento laminare turbolento transizione uu uu uu uu

15 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Lastra piana con deflusso parallelo - Moto turbolento 2/2 Rispetto al moto laminare, lo strato limite turbolento cresce più rapidamente: Il coefficiente di attrito decresce più gradualmente: Attraverso l’analogia di Reynolds si ricava l’espressione dello scambio termico: I coefficienti di convezione risultano più elevati rispetto al moto laminare

16 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su superfici cilindriche 1/4 Il parametro guida è il numero di Reynolds definito come: Per Re > 5 avviene la separazione dello stato limite con distacco e formazione di vortici:

17 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su superfici cilindriche 2/4 Partendo dal punto di ristagno, la pressione diminuisce nella parte frontale del cilindro, per poi aumentare nella parte posteriore. Successivamente si verifica anche un flusso invertito: il moto diventa vorticoso e con una forte componente di casualità. Parallelamente, la velocità subisce un incremento nella zona anteriore, per poi rallentare quando la pressione cresce: in questa fase può avvenire che il gradiente di velocità lungo y si annulli, ed è proprio qui che avviene il distacco.

18 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su superfici cilindriche 3/4 La complessità del fenomeno suggerisce un approccio sperimentale per ciò che concerne l’analisi dello scambio termico: Cilindro investito da aria Per bassi valori di Re (i primi due) il moto si mantiene laminare fino al distacco (q = 80°); successivamente il coefficiente cresce per l’instaurarsi di moti vorticosi. Al crescere di Re le curve presentano due minimi:  uno per il passaggio da moto laminare a turbolento;  l’altro in corrispondenza della separazione (q = 140°).

19 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su superfici cilindriche 4/4 Il valore medio del coefficiente di scambio termico sull’area complessiva del cilindro soddisfa la relazione: con T s temperatura della superficie del cilindro Un espressione di tale coefficiente è stata ottenuta da Whitaker: Valida per:

20 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su banchi di tubi 1/4 BANCO DI TUBI ALLINEATI Passo longitudinalePasso trasversale Tale configurazione dà origine a flussi termici non troppo elevati e a modeste cadute di pressione; il numero di Reynolds significativo è: con

21 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su banchi di tubi 2/4 BANCO DI TUBI SFALSATI Passo trasversale Tale configurazione dà origine a flussi termici molto elevati e ad altrettanto elevate cadute di pressione; il numero di Reynolds significativo è: con Passo longitudinale Passo diagonale se altrimenti vale la relazione dei tubi allineati.

22 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su banchi di tubi 3/4 Il coefficiente di scambio termico per tali configurazioni è definito dalla relazione di Zukauskas: valida per un numero di schiere N > 10, per 1000 < Re D < 2x10 6 e per 0,7 < Pr < 500. Tubi sfalsati n = 0 per i gas e 0,25 per I liquidi; C ed m variano come segue: Tubi allineati

23 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso trasversale su banchi di tubi 4/4 La caduta totale di pressione si può valutare attraverso una correlazione sperimentale, proposta sempre da Zukauskas: Tubi sfalsati in cui f è il fattore d’attrito e Z è un fattore di correzione che dipende dalla configurazione della schiera: Tubi allineati

24 CONVEZIONE FORZATA ALL’ESTERNO DI SUPERFICI Deflusso parallelo a banchi di tubi Risultati sperimentali suggeriscono la valutazione del coefficiente di scambio termico come segue: in cui C risulta pari a: Tubi sfalsati (configurazione triangolare con interasse pari a S D ) Tubi allineati (S L = S T )

25 CONVEZIONE FORZATA NEI CONDOTTI Valgono considerazioni simili al deflusso esterno alle superfici, considerando semplicemente che vi sono frontiere che condizionano lo sviluppo dello strato limite. Dopo una regione di ingresso in cui avviene l’accrescimento dello strato limite, il moto nel resto del condotto diventa completamente sviluppato. Nel moto laminare c.s., ricordando l’equazione della q.d.m. in coordinate cilindriche: Con le condizioni di strato limite sviluppato: Integrando due volte rispetto ad r:

26 CONVEZIONE FORZATA NEI CONDOTTI Le condizioni al contorno per il calcolo delle due costanti: aderenza alla parete simmetria della velocità rispetto all’asse Si ottiene dunque: Con velocità massima per r=0: La velocità massima pari al doppio della velocità media: Quindi:

27 Il caso di maggior interesse per la maggioranza delle applicazioni pratiche è comunque il moto turbolento. Nei condotti la transizione da moto laminare a turbolento si ha per Re D > Per Re D > il moto è completamente turbolento. C’è una zona di ingresso in cui lo strato limite è ancora laminare, la sua estensione è: CONVEZIONE FORZATA NEI CONDOTTI Introducendo il fattore di attrito f: si ottiene:

28 La distribuzione di velocità (moto turbolento) è: CONVEZIONE FORZATA NEI CONDOTTI Si utilizzano i risultati della geometria piana, con gli stessi coefficienti del moto laminare: con: v * velocità di attrito alla parete; T m temperatura di miscela con y è la distanza dalla parete del condotto. e poichè

29 CONVEZIONE FORZATA NEI CONDOTTI Sostituendo nell’espressione di C f si ottiene: e ricordando che nei tubi il fattore di attrito è: si ottiene, per tubi lisci: L’effetto della rugosità si riassume con la scabrezza assoluta e, che modifica l’espressione del fattore d’attrito come segue (COLEBROOK): DIAGRAMMA DI MOODY HAALAND formulazione esplicita, errore dell’1,5% forma semplificata

30 CONVEZIONE FORZATA NEI CONDOTTI DIAGRAMMA DI MOODY

31 CONVEZIONE FORZATA NEI CONDOTTI SCAMBI TERMICI Nel moto laminare vale la relazione: Tale relazione si può applicare anche al moto turbolento, infatti: SFORZO TANGENZIALE FLUSSO TERMICOcon: Se Pr = Pr t = 1 le due equazioni sono analoghe a dal loro sviluppo si deduce: Ipotizzando valida questa relazione anche per Sostituendo l’espressione di COLEBROOK semplificata:si ottiene ovvero (COLBURN)

32 CONVEZIONE FORZATA NEI CONDOTTI SCAMBI TERMICI Per tenere conto del differente comportamento delle caratteristiche del fluido in riscaldamento ed in raffreddamento: con: n Se la viscosità varia considerevolmente con la temperatura: DITTUS - BOELTER 0,4 per T P > T m (riscaldamento) 0,3 per T P < T m (raffreddamento) SIEDER E TATE

33 CONVEZIONE FORZATA NEI CONDOTTI SCAMBI TERMICI Le precedenti relazioni valgono per tubi lisci; per condotti rugosi si utilizza la : PETUKHOV con: n 0,11 per riscaldamento 0 flusso termico uniforme alla parete 0,25 per rarreddamento Lo scambio termico nella zona di ingresso, quando cioè il moto non è completamente sviluppato, è descritto dalla: NUSSELT

34 CONVEZIONE FORZATA NEI CONDOTTI CONDOTTI A SEZIONE NON CIRCOLARE Valgono tutte le correlazioni viste finore a patto che si sotituisca il diametro D del condotto con il diametro idraulico: con: A c = sezione trasversale del condotto p = perimetro bagnato del condotto


Scaricare ppt "CONVEZIONE FORZATA. EQUAZIONI DELLO STRATO LIMITE Regime stazionario; r, c p costanti; fluido incomprimibile; assenza di generazione interna di calore;"

Presentazioni simili


Annunci Google