La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

LA LOGICA COS’E’ LA LOGICA ELEMENTI E OPERAZIONI APPLICAZIONE PRATICA A cura degli alunni Mauro Alessandro e Driusso Marco, con il supporto degli insegnanti.

Presentazioni simili


Presentazione sul tema: "LA LOGICA COS’E’ LA LOGICA ELEMENTI E OPERAZIONI APPLICAZIONE PRATICA A cura degli alunni Mauro Alessandro e Driusso Marco, con il supporto degli insegnanti."— Transcript della presentazione:

1

2 LA LOGICA COS’E’ LA LOGICA ELEMENTI E OPERAZIONI APPLICAZIONE PRATICA A cura degli alunni Mauro Alessandro e Driusso Marco, con il supporto degli insegnanti Donno Mario Carlo e Altan Daniele (Scienze matematiche e fisiche). Anno scol Ecco di cosa parleremo:

3 COS’E’ LA LOGICA La LOGICA è una disciplina che si occupa di stabilire le regole per procedere in ragionamenti coerenti e corretti. Nel nostro caso ci occuperemo in particolare della logica matematica o formale, cioè della branca della matematica che studia i concetti e ne stabilisce regole precise.

4 ELEMENTI E OPERAZIONI Viene indicata con una lettera dell’alfabeto: p: “Sono uno studente”V1 q: “Un anno ha 1000 giorni”F0 LE PROPOSIZIONI O ENUNCIATI Sono delle espressioni discorsive, corrette dal punto di vista sintattico, a cui è possibile assegnare uno ed uno solo dei due valori di verità, vero o falso.

5 e corrisponde al connettivo «non». Nel linguaggio informatico è anche indicato NOT o INVERTER. La tavola di verità corrispondente è: LA NEGAZIONE E’ la proposizione che è vera se l’enunciato di partenza è falso e falsa nell’altro caso. Si indica Esempio: p: «6 è pari»V non p: «6 non è pari »F

6 Esempio: p: “Roma è in Italia”V q: “Il forno raffredda”F p  q: “Roma è in Italia e il forno raffredda”F Dati due enunciati, la congiunzione è quella terza proposizione che è vera solo se le due di partenza sono vere. Si indica p  q e corrisponde al connettivo «e» anche detto AND. La tavola di verità è la seguente. LA CONGIUNZIONE

7 E’ quell’operazione che permette di trovare una terza proposizione che è vera se almeno uno degli enunciati di partenza è vero. Viene indicata: si legge “p vel q” LA DISGIUNZIONE INCLUSIVA o altrimenti:p OR q Corrisponde al connettivo linguistico «o». Esempio: p: «Pordenone è in Friuli»V q: «Il ghiaccio è caldo»F p  q: «Pordenone è in Friuli o il ghiaccio è caldo »V

8 LA DISGIUNZIONE ESCLUSIVA La disgiunzione esclusiva è l’operazione binaria che fa corrispondere a due proposizioni p e q la proposizione composta p q che è vera quando è vera una sola delle proposizioni componenti. La disgiunzione esclusiva corrisponde al connettivo “o…o…”(in latino a “aut”) o, nel linguaggio informatico, a “XOR”. La tavola di verità corrispondente è: Esempio: p:”Napoli è in Campania”V q:”Venezia è in Liguria”F p q:”o Napoli è in Campania o Venezia è in Liguria”V

9 L’IMPLICAZIONE MATERIALE L’implicazione materiale o condizionale è l’operazione binaria che fa corrisponere a due proposizioni p e q la propopsizione composta p  q che è sempre vera tranne quando p è vera e q è falsa. L’implicazione materiale corrisponde al connettivo “se…allora”. La tavola di verità corrispondente è: Esempio: p: “Milano è in Lombardia” V q: “Madrid è in Italia” F p  q: “Se Milano è in Lombardia allora Madrid è in Italia” F

10 LA DOPPIA IMPLICAZIONE La doppia implicazione materiale o bicondizionale è l’operazione binaria che fa corrispondere a due proposizioni p e q la proposizone composta p  q che è vera quando p e q sono entrambe vere o entrambe false. La doppia implicazione materiale corisponde al connettivo “...se e solo se…” o, nel linguaggio informatico, a “NOT XOR”. La tavola di verità corrispondente è: Esempio: p:”Genova è in Liguria”V q:”Il monte Bianco è in Sicilia”F p  q:”Genova è in Liguria se e solo se il monte Bianco è in Sicilia”F

11 TAUTOLOGIE Si definisce tautologia una proposizione composta che risulta sempre vera, indipendentemente dai valori di verità delle proposizioni componenti. Ecco alcuni esempi di tautologie: Esempio: è sempre vero che cammino o non cammino. Esempio: non può essere vero che piove e (contemporaneamente) non piove. Principio del Terzo Escluso. Principio di non contraddizione.

12 CONTRADDIZIONI Si definisce contraddizione una proposizione composta sempre falsa, indipendentemente dai valori di verità delle proposizioni componenti. La proposizione p  p è una contraddizione perché è sempre falsa, come si può vedere nella corrispondente tabella di verità. Esempio: è sempre falso che piove e (contemporaneamente) non piove


Scaricare ppt "LA LOGICA COS’E’ LA LOGICA ELEMENTI E OPERAZIONI APPLICAZIONE PRATICA A cura degli alunni Mauro Alessandro e Driusso Marco, con il supporto degli insegnanti."

Presentazioni simili


Annunci Google