La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

ASSIOMI di PEANO PER LARITMETICA (Arithmetice principia nova methodo exposita, 1889) 1)N 0 è una classe (i suoi elementi sono numeri) 2)Zero è un numero.

Presentazioni simili


Presentazione sul tema: "ASSIOMI di PEANO PER LARITMETICA (Arithmetice principia nova methodo exposita, 1889) 1)N 0 è una classe (i suoi elementi sono numeri) 2)Zero è un numero."— Transcript della presentazione:

1 ASSIOMI di PEANO PER LARITMETICA (Arithmetice principia nova methodo exposita, 1889) 1)N 0 è una classe (i suoi elementi sono numeri) 2)Zero è un numero 3)Se a è un numero, il successivo di a è un numero 4)Zero non è il successivo di nessun numero 5)Due numeri i cui successivi siano uguali sono uguali 6)Se una classe S di numeri contiene lo zero e contiene anche il successivo di ogni numero di S, allora ogni numero è contenuto in S ( pr.induzione) MMosca SIS Piemonte

2 Assiomi del campo dei razionali Assiomi del campo dei reali + Addizione * Moltiplicazione Operazioni interne Proprietà associativa Proprietà commutativa Ciascuna ha un elemento neutro Ogni elemento ha un inverso rispetto a + e * ( tranne che lo 0 per la moltiplicazione). Proprietà distributiva della moltiplicazione rispetto alladdizione MMosca SIS Piemonte

3 Assiomi degli interi Z + Addizione * Moltiplicazione Operazioni interne Proprietà associativa Proprietà commutativa Ciascuna ha un elemento neutro Ogni elemento ha un inverso rispetto a + Proprietà distributiva della moltiplicazione rispetto alladdizione Z è un ANELLO

4 a*0=0 Assioma? Teorema ? La definizione della moltiplicazione in Z : (e in Q, R ) Perché + * - fa - ? Perché - * - fa + ? MMoscaSIS Piemonte

5 POLINOMI 2 aspetti o punti di vista 1) Algebrico formale 2) Funzionale 1) A(x) è un espressione algebrica che, ridotta a forma normale, è del tipo A(x) = a n x n + a n-1 x n a 1 x+ a 0 a i = Z, Q, R, C x è un simbolo, cui non si attribuisce significato numerico, lindeterminata

6 Perché è importante precisare lambito numerico in cui si scelgono i coefficienti ? Che cosè un polinomio irriducibile? x è irriducibile? x Dipende dal campo in cui lavoriamo

7 I polinomi definiti su K costituiscono un anello commutativo Non vi è definita una relazione dordine ma il grado del polinomio assume un ruolo analogo Vale il teorema dellannullamento del prodotto

8 Vale il teorema della divisione euclidea: Dati due polinomi A(x) e B(x), B(x) 0, esistono (unici) due polinomi Q(x) e R(x) tali che A(x) = Q(x) B(x) + R(x) il grado di R(x) è minore del grado di B(x)

9 I polinomi definiti su K costituiscono un anello commutativo Non vi è definita una relazione dordine ma il grado del polinomio assume un ruolo analogo Vale il teorema dellannullamento del prodotto

10 2) Punto di vista analitico -funzionale Attribuiamo ad x un significato numerico considerandola un elemento variabile di K, meglio indicare tale valore con una lettera diversa, ad esempio k: Se si associa ad ogni k di K il numero A(k) = a n k n + a n-1 k n a 1 k+ a 0 si definisce una funzione polinomiale con dominio K e codominio K.

11 Sarebbe bene indicare la funzione con A: k A(k) ; e Riservare la scrittura y = A (k) al grafico cartesiano

12 Teorema di identità dei polinomi Due polinomi A(x) e B(x) sono uguali se e solo se hanno lo stesso grado e, scritti in forma normale, i coefficienti dello stesso grado sono tutti uguali. ( punto di vista formale) Due polinomi A(x) e B(x) si dicono funzionalmente uguali se e solo se individuano la stessa funzione definita su K e a valori in K, cioè se A(k) = B(k) per ogni k K

13 Strutture in cui non vale il teorema di identità Espressioni polinomiali in seno e coseno sin 2 t e 1- cos 2 t sono espressioni diverse di una stessa funzione Se K è un campo finito es Z 2 A(x)= x e B(x) = x 3 sono formalmente diverse, ma funzionalmente identiche, poiché assumono lo stesso valore sia per x = che per x =


Scaricare ppt "ASSIOMI di PEANO PER LARITMETICA (Arithmetice principia nova methodo exposita, 1889) 1)N 0 è una classe (i suoi elementi sono numeri) 2)Zero è un numero."

Presentazioni simili


Annunci Google