La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Teoria degli INSIEMI A cura Prof. Salvatore MENNITI.

Presentazioni simili


Presentazione sul tema: "Teoria degli INSIEMI A cura Prof. Salvatore MENNITI."— Transcript della presentazione:

1 Teoria degli INSIEMI A cura Prof. Salvatore MENNITI

2 Presentazione Questa presentazione può essere utilizzata come valido supporto allo studio, per studiare autonomamente le parti fondamentali dell’unità didattica. Si propone inoltre un approfondimento sugli insiemi infiniti e alcuni paradossi che ne derivano. Sono proposti alcuni esercizi, grazie ai quali verificare il proprio grado di preparazione e i livelli di apprendimento.

3 RAPPRESENTAZIONE A A = Marta; Andrea; Matteo; Martina; Simone; Anna
Per rappresentare un qualsiasi insieme possiamo utilizzare tre diversi metodi. Si voglia ad esempio rappresentare l’insieme che chiameremo “A” di tutti gli amici di Marco che sono: Andrea, Marta, Simone, Matteo, Anna, Martina. A Con i diagrammi di Eulero Venn: 1 Marta  Simone  Andrea  Martina  Matteo  Anna 2 Attraverso la rappresentazione tabulare (estensiva): A = Marta; Andrea; Matteo; Martina; Simone; Anna Enunciando la proprietà caratteristica (intensiva): 3 A = xx è amico di Marco

4 U (insieme ambiente o universo)
APPARTENENZA “” U (insieme ambiente o universo) B = b; d A a  B A = a; b; d; e; f e  b  f  U = a; b; c; d; e; f d c  a  A, a  U, a  B, b  B, b  A, b  U c  U, c  B, c  A

5 SOTTOINSIEMI, INCLUSIONE “, ”
B è un SOTTOINSIEME IMPROPRIO di A U A Ogni insieme è un SOTTOINSIEME (IMPROPRIO) di sé stesso a  B C b  d L’insieme vuoto è un SOTTOINSIEME (IMPROPRIO) di ogni insieme c  A è un SOTTOINSIEME DI U B  A   C,   B, ….. C è un SOTTOINSIEME DI B A U C B A  A, B  B,…..

6 SOTTOINSIEMI, INCLUSIONE
U = a; b; c; d; e; f A A = a; b; d; e; f a  B e  b  B = b; d f  d b; d  B c  a; b; d  A d  B

7    APPARTENENZA e INCLUSIONE A b  d APPARTENENZA INCLUSIONE
L’elemento b appartiene all’insieme A L’insieme b è strettamente incluso nell’insieme A L’insieme d;bA d;b  A o d;b = A b  A b  A

8 INSIEME COMPLEMENTARE AC
AC= CuA= xx U e x  A  U b  d  A E’ l’insieme degli elementi di U c  e  a  f  g  CUA =a; b; g Che non appartengono ad A 8

9 E’ l’insieme degli elementi che appartengono sia ad A sia a B
INTERSEZIONE “A  B” E’ l’insieme degli elementi che appartengono sia ad A sia a B A  B = xx A e x B  B A A  B

10 A e B si dicono DISGIUNTI
CASI PARTICOLARI DELL’INTERSEZIONE A  A = A Se A  B = , A e B si dicono DISGIUNTI A   =  A  A =  Se B  A allora A  B = B A  U = A

11 E’ l’insieme degli elementi
UNIONE “A  B” E’ l’insieme degli elementi che appartengono ad A “o” a B, cioè ad almeno uno dei due insiemi dati. A  B = xx A o x B  B A A  B

12 UNIONE di insiemi DISGIUNTI
L’UNIONE degli insiemi A e B è l’insieme degli elementi che appartengono ad A “o” a B, cioè ad almeno uno dei due insiemi dati. A B A  B

13 CASI PARTICOLARI DELL’UNIONE
A  A = A A   = A A  A = U Se B  A allora A  B = A

14 A  B = a; b; c; d; e; f; g; h; i; l
A = a; b; c; d; e; f B = d; e; f; g; h; i; l B A g  a  d  b  i  e  h  c  f  l  A  B = d; e; f A  B = a; b; c; d; e; f; g; h; i; l 14

15 DIFFERENZA A - B B A A - B A - B = xx A e x  B 
E’ l’insieme formato da tutti gli elementi di A che non appartengono a B A - B = xx A e x  B  B A A - B Si tolgono ad A tutti gli elementi che appartengono a B E’ costituito dagli elementi di A che NON appartengono a B

16 DIFFERENZA. “A - B”, “B - A”.
A = a; b; c; d; e; f B = d; e; f; g; h; i; l B A g  a  d  b  i  e  h  c  f  l  A - B = a; b; c B - A = g; h; i; l

17 DIFFERENZA. “A - B”, “B - A”.
g  a  d  e  h  b  i  c  f  l  B g  A a  d  B - A = g; h; i; l e  h  b  i  c  f  l  B g  a  d  e  h  b  i  A - B = a; b; c c  f  A l 

18 Se A  B =  allora A - B = A e B - A = B
CASI PARTICOLARI DELLA DIFFERENZA TRA INSIEMI A - A =  A -  = A Se A  B =  allora A - B = A e B - A = B Se B  A allora B - A = 

19 P(A) =  ; a; b; c; a; b; a; c; b; c; a; b; c 
INSIEME DELLE PARTI “P(A)” Dato un insieme A, l’insieme di tutti i suoi SOTTOINSIEMI propri e impropri, si definisce insieme delle parti di A e si indica con P(A) A = a; b; c; A a  b  c  L’insieme delle parti di A è: I possibili SOTTOINSIEMI di A sono: a b c a; b a; c b; c a; b; c P(A) =  ; a; b; c; a; b; a; c; b; c; a; b; c  Gli elementi di P(A) sono INSIEMI Se A contiene n elementi, P(A) ne contiene 2n 19

20 A PARTIZIONE DI UN INSIEME A2 A1 A3 A5 A4
Si consideri un numero “n” di sottoinsiemi di A. A A2 A1 A3 A5 A4 Si dice che questi sottoinsiemi costituiscono una PARTIZIONE di A se: Ogni sottoinsieme è proprio 1 Ai  A e Ai  ,  i I sottoinsiemi sono a due a due disgiunti 2 Ai  Ak =  con i  k L’unione di tutti i sottoinsiemi dà l’insieme A A1  A2  A3  A4  A5 = A 3 20

21 Dati gli insiemi: A = a; b; c; e B = 1;2
PRODOTTO CARTESIANO Si definisce prodotto cartesiano di due insiemi A e B, e si indica A x B, l’insieme formato da tutte le coppie ordinate (x;y) dove il primo elemento appartiene ad A e il secondo a B A x B = (x;y)x  A e y  B  Dati gli insiemi: A = a; b; c; e B = 1;2 Si legge A cartesiano B A B a  1  A x B =  (a ;1), (a ;2), (b ;1), b  (c ;2)  (b ;2), (c ;1), 2  c 

22 può essere rappresentato graficamente nei seguenti modi:
RAPPRESENTAZIONE GRAFICA DEL PRODOTTO CARTESIANO L’insieme A x B = (a; 1); (a; 2); (b; 1); (b; 2); (c; 1); (c; 2) può essere rappresentato graficamente nei seguenti modi: A B a  Rappresentazione SAGITTALE 1  b  Rappresentazione mediante tabella a DOPPIA ENTRATA 2  c  Rappresentazione CARTESIANA 2 1 a b c

23 OSSERVAZIONI SUL PRODOTTO CARTESIANO
La coppia (x;y) è diversa dalla coppia (y;x) Gli elementi dell’insieme cartesiano sono coppie A x A = A2 A x B  B x A Se A e B hanno rispettivamente “n” e “m” elementi, l’insieme A x B possiede “n*m” elementi.

24 LE “STRANEZZE” DEGLI INSIEMI INFINITI

25 L’insieme dei numeri pari P è un sottoinsieme proprio dell’insieme dei numeri naturali N?
Rispondi: N = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12;..  Si! Infatti per costruire P scelgo solo alcuni elementi di N. P = 0; 2; 4; 6; 8; 10…. Quale insieme ha più elementi? N o P? Se P ha meno elementi, come si è portati a pensare, essendo P un sottoinsieme proprio di N, contando gli elementi di P ad un certo punto ci si dovrà fermare, proprio come succede quando si conta il numero delle stanze della casa dove abitiamo! PROVA A CONTARE UTILIZZANDO LE DITA IL NUMERO DELLE STANZE DELLA TUA CASA!!!!

26 Proviamo a contare quanti elementi (numeri) ha P
Proviamo a contare quanti elementi (numeri) ha P. Invece che contare utilizzando le dita come facciamo qualche volta, utilizziamo l’insieme N e delle frecce. Per ora trascuriamo lo zero. N = 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12;..  P = 2; 4; 6; 8; 10; 12; 14; 16; 18…. A quale numero ci fermiamo????? Quanti sono gli elementi di P?? Chi ha più elementi N o P? Abbiamo ottenuto un risultato assai strano! Dato un insieme con un numero infinito di elementi è possibile che un suo SOTTOINSIEME PROPRIO abbia lo stesso numero di elementi!!!

27 Clicca sulla risposta corretta
ESERCIZIO N. 1….. C Trova: A  B  C Clicca sulla risposta corretta m  n  B A g  a  d  b  i  e  h  c  f  l  A  B  C = g; h; i; l A  B  C = d Esercizio Successivo A  B  C = d; e; f A  B  C = e; f

28 Clicca sulla risposta corretta
ESERCIZIO N. 2….. C Trova: C - (A  B) Clicca sulla risposta corretta m  n  B A g  a  d  b  i  e  h  c  f  l  C - (A  B) = m; n C - (A  B) = e; f Esercizio Successivo C - (A  B) = m; n; d C - (A  B) = g; h; i; l

29 ESERCIZIO N. 3….. C Quale espressione rappresenta l’area evidenziata? Clicca sulla risposta corretta B A C - (A  B) C  B Esercizio Successivo (C  B) - A (A  B) - C

30 ESERCIZIO N. 4….. C Quale espressione rappresenta l’area evidenziata? Clicca sulla risposta corretta B A C - (A  B) C  B Esercizio Successivo (C  B) - A (A  B) - C

31 ESERCIZIO N. 5….. C Quale espressione rappresenta l’area evidenziata? Clicca sulla risposta corretta B A (C - (A  B))  ((A  B) - C) C  B (C  B) - A (A  B) - C


Scaricare ppt "Teoria degli INSIEMI A cura Prof. Salvatore MENNITI."

Presentazioni simili


Annunci Google