La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

La probabilità condizionata Se dobbiamo calcolare la probabilità di un evento, A, avendo a disposizione informazioni su un evento “precedente”, B, è opportuno.

Presentazioni simili


Presentazione sul tema: "La probabilità condizionata Se dobbiamo calcolare la probabilità di un evento, A, avendo a disposizione informazioni su un evento “precedente”, B, è opportuno."— Transcript della presentazione:

1 La probabilità condizionata Se dobbiamo calcolare la probabilità di un evento, A, avendo a disposizione informazioni su un evento “precedente”, B, è opportuno incorporare l’informazione nella definizione di P(A) B A

2 La probabilità condizionata Definiamo la probabilità di A condizionata a B: L’evento B diventa il nuovo spazio campionario di riferimento

3 Esempi Lancio di due monete. –Ω = {(T,T); (T,C);(C,T); (C,C) } –A={2° lancio è T}, –B={1° lancio è T} –P(A) = P(T,T) + P(C,T) = 1/2 –P(B) = P(T,T) + P(T,C) = 1/2 –P(A∩B) = P(T,T) = 1/4 –P(A|B) = P(A∩B)/P(B) = 1/2

4 Esempi Lancio di un dado. –Ω = {1,2,3,4,5,6} A={6}, B={2,4,6}, C={1,3,5}, D={1,3} P(A|B) = 1/3 P(A|C) = 0 P(D|C) = 2/3

5 Esempi In uno spazio campionario si ha P(A 1 ) = 1/3, P(A 2 )= ¼ e P(A 1  A 2 ) =1/6 Verificare che 1. P(A 1 | A 2 ) = 2/3 2. P(A 2 | A 1 ) = 1/2 3. P(Ā 2 | A 1 ) = 1/2 4. P(A 2 | Ā 1 ) = 1/8 5. P(Ā 2 | Ā 1 ) = 7/8

6 Esempi Sia  = [0;1] (l’int. 0,1), per un evento A , Se A=[0; 0,5], B=[0,3; 0,8], C=[0,7; 1]

7 Regola moltiplicativa e indipendenza Si noti che dalla definizione: P (A  B) = P(A) P(B|A) = P(B) P(A|B) Due eventi si dicono indipendenti se il verificarsi di B non influenza la probabilità di A e viceversa P (A|B) =P(A) P(B|A) = P(B) Vale quindi la relazione P(A  B) = P(A) P(B) Il ricorso alla regola moltiplicativa spesso permette di calcolare più agevolmente la probabilità di intersezioni di eventi

8 Esempio Da un mazzo di 52 carte se ne estraggono due in sequenza, senza riposizione. Determinare la probabilità che la prima estratta sia una carta di cuori (A 1 ) e la seconda estratta sia una carta di fiori (A 2 ) La probabilità cercata è P(A 1 ∩ A 2 ) P(A 1 ) = 13/52, P(A 2 |A 1 ) = 13/51, P(A 1 ∩ A 2 ) = P(A 2 |A 1 ) P(A 1 ) = 13 2 /(52∙51)

9 Indipendenza Quando vale la relazione P(A  B) = P(A) P(B) si dice che gli eventi A e B sono indipendenti. L’indipendenza permette di calcolare probabilità congiunte da probabilità di singoli eventi P( A  B  C) = P(A)P(B  C) = P(A)P(B)P(C) P(A  B) = P(A) + P(B) – P(A)P(B)

10 Esempio Lancio di una moneta due volte:  = {(T,T), (T,C), (C,T), (C,C)} Definiamo: A = {1° lancio T} = {(T,T), (T,C)} B = {2° lancio T} = {(T,T), (C,T)} da cui A  B = {(T,T)} P(A  B) = 1/4 = (1/2)(1/2) = P(A) P(B)

11 Teorema di Bayes Sia A 1, A 2,... A k una partizione di , cioè A 1  A 2 ...  A k = , A i  A j = , i  j Dato un qualsiasi evento B  , A1A1 A2A2 A3A3 A4A4 B

12 Teorema di Bayes Si noti che possiamo sempre scomporre Poiché

13 Esempio Uno studente deve sostenere un esame. Se studia passa con probabilità 99 %, ma se va alla festa da ballo la sera prima la sua probabilità di promozione si riduce al 50 %. Decide di andare alla festa se esce testa lanciando una moneta equa. Il giorno dopo egli supera l'esame. Qual è la probabilità che sia andato a ballare?

14 Si considerino gli eventi: E = passa l'esame, A = va alla festa, I dati a disposizione sono: P( E | Ā)= 0.99, P( E | A) = 0.50, P(A) = P(Ā)= 0.5 Da cui


Scaricare ppt "La probabilità condizionata Se dobbiamo calcolare la probabilità di un evento, A, avendo a disposizione informazioni su un evento “precedente”, B, è opportuno."

Presentazioni simili


Annunci Google