La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Cosa sono? Come si risolvono?. Che differenza cè tra identità ed equazione? IDENTITA: unidentità è unuguaglianza tra 2 espressioni letterali verificata.

Presentazioni simili


Presentazione sul tema: "Cosa sono? Come si risolvono?. Che differenza cè tra identità ed equazione? IDENTITA: unidentità è unuguaglianza tra 2 espressioni letterali verificata."— Transcript della presentazione:

1 Cosa sono? Come si risolvono?

2 Che differenza cè tra identità ed equazione? IDENTITA: unidentità è unuguaglianza tra 2 espressioni letterali verificata per qualunque valore attribuito alle lettere contenute nellespressione EQUAZIONE: unequazione è unuguaglianza tra 2 espressioni letterali verificata solo da particolari valori attribuiti alle lettere contenute nellespressione

3 Sono esempi di identità: sono identità perché qualsiasi valore si assegni alla lettera a o x, si ha che il primo membro è uguale al secondo membro

4 Sono esempi di equazione: infatti la prima uguaglianza è verificata solo per il valore x=5, mentre la seconda è verificata solo per a=2. Tali valori prendono il nome di soluzioni o radici dellequazione. Risolvere un equazione significa trovarne le soluzioni.

5 Tipi di equazioni INTERA: se lincognita è presente soltanto nel numeratore FRATTA: se lincognita è presente anche nel denominatore NUMERICA: se lunica lettera che compare è lincognita LETTERALE: se oltre allincognita compaiono anche altre lettere, che prendono il nome di parametri

6 Esempi: equazione numerica intera equazione numerica fratta equazione letterale intera equazione letterale fratta

7 Forma normale di unequazione Portando tutti i termini di unequazione a sinistra delluguale, eseguendo i calcoli e riducendo i termini simili, lequazione si può scrivere come un polinomio P(x) uguale a zero: Questa si chiama forma normale, o canonica, dellequazione. Il grado del polinomio P(x) si dice grado dellequazione.

8 Esempi: è unequazione in forma normale di secondo grado è un equazione in forma normale di primo grado lequazione non è in forma normale, pertanto non se ne può stabilire il grado. Se la riportiamo in forma canonica vediamo che è di I°grado

9 Esercizi guidati Verifica se lespressione è una identità. Se si eseguono i calcoli e si riducono i termini simili nei due membri, si ottiene: I° membro … II° membro … Lespressione è unidentità perché il I° membro è uguale al II° membro.

10 Riduci in forma normale la seguente equazione e indica il suo grado: Si eseguono i calcoli Si spostano tutti i termini al I° membro Si riducono i termini simili … Pertanto lequazione è di grado …….

11 Equazioni equivalenti Due equazioni si dicono equivalenti se hanno le stesse soluzioni. Per risolvere unequazione generalmente è necessario trasformarla in una equivalente più semplice che, a sua volta si trasforma in unaltra ancora più semplice, e così via. Per eseguire questa trasformazione si utilizzano i seguenti due principi di equivalenza.

12 Principi di equivalenza I° Principio: aggiungendo o togliendo ai due membri di unequazione uno stesso numero o una stessa espressione, si ottiene una equazione equivalente II° Principio: moltiplicando o dividendo i due membri di unequazione per uno stesso numero o espressione diverso da zero, si ottiene unequazione equivalente

13 Da questi principi si deducono alcune conseguenze importanti dal punto di vista operativo: Si possono spostare i termini da un membro allaltra cambiandone il segno Si può eliminare uno stesso elemento presente in tutti e due i membri

14 Se i due membri hanno un fattore numerico identico lo si può sopprimere Si può cambiare il segno a tutta lequazione Si possono eliminare i denominatori, facendo prima il minimo comune multiplo, nei due membri

15 Tipi di equazioni Considerando le soluzioni, unequazione può essere: DETERMINATA: se ha un numero finito di soluzioni INDETERMINATA: se ha infinite soluzioni, cioè è una identità IMPOSSIBILE: se non ha soluzioni

16 Esempi: determinata con soluzione impossibile indeterminata determinata con soluzione

17 Il procedimento per la risoluzione di unequazione di primo grado Per risolvere unequazione: la si libera dagli eventuali denominatori, facendo il m.c.m. si eliminano le parentesi effettuando i calcoli si spostano i termini, in modo da avere al I° membro solo quelli che contengono lincognita si riducono i termini simili, portando lequazione in forma normale si stabilisce se lequazione è determinata (e si trova la soluzione), indeterminata o impossibile

18 Verifica della soluzione Per stabilire se la soluzione trovata è esatta, nel caso in cui lequazione sia determinata, si effettua la verifica che consiste nel sostituire la soluzione allincognita in ciascuno dei due membri dellequazione, per verificare se si ottiene lo stesso risultato. Lequazione: ha come soluzione Verifica: I° membro … II° membro … La soluzione è esatta essendo i due membri uguali.

19 Esercizi guidati Risolvi le seguenti equazioni: 1. esegui i calcoli … sposta i termini … riduci i termini simili …

20 cambia di segno … dividi per 3 … la soluzione è …

21 2. m.c.m. … sposta i termini … riduci i termini simili … cambia segno e otterrai la soluzione …

22 3. esegui i calcoli riducendo i termini simili e spostando i … rimanenti si ottiene la soluzione è … e lequazione risulta … INDETERMINATA

23 4. esegui i calcoli … sposta i termini … riduci i termini simili … lequazione risulta … IMPOSSIBILE

24 Esercizi proposti

25 Risoluzione equazioni fratte In sintesi per risolvere unequazione fratta si deve: scomporre in fattori le frazioni algebriche presenti determinare le condizioni di esistenza (C.E.) delle frazioni algebriche scomposte portare tutte le frazioni algebriche ad un denominatore comune (m.c.m.)

26 eliminare il denominatore moltiplicando entrambi i membri dellequazione per lo stesso denominatore, in modo da ottenere unequazione intera calcolare le soluzioni dellequazione intera controllare che tali soluzioni siano accettabili, cioè che rispettino le condizioni di esistenza: in caso affermativo esse sono soluzioni dellequazione fratta, altrimenti lequazione risulta impossibile

27 Esercizi guidati 1. i denominatori non sono da scomporre si esegue il m.c.m. e lo si elimina moltiplicando per lo stesso si scrivono le condizioni di esistenza

28 esegui i calcoli e semplifica cambia di segno e otterrai … si confronta la soluzione con le condizioni di esistenza e … essendo diverse da questa è la soluzione

29 2. si scompongono i denominatori si calcola il m.c.m. e lo si elimina si scrivono le C.E. … si eseguono i calcoli … la soluzione è … e … non è accettabile perché non è nel C.E.

30 Esercizi proposti


Scaricare ppt "Cosa sono? Come si risolvono?. Che differenza cè tra identità ed equazione? IDENTITA: unidentità è unuguaglianza tra 2 espressioni letterali verificata."

Presentazioni simili


Annunci Google