Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoAdone Mascia Modificato 10 anni fa
1
angoli orientati negativamente se la rotazione avviene in verso orario
Definizione di angolo Un angolo è la parte di piano descritta da una semiretta a che ruota attorno alla sua origine. Inoltre, poiché la rotazione può avvenire in due modi diversi conveniamo di considerare: angoli orientati positivamente se la rotazione avviene in verso antiorario angoli orientati negativamente se la rotazione avviene in verso orario dalla definizione precedente deriva che è possibile considerare angoli maggiori di un angolo giro: basta continuare a far ruotare la semiretta oltre tale angolo. L’angolo α supera l’amgolo giro dell’angolo β.
2
Misure di angoli Grado sessagesimale: novantesima parte dell’angolo retto. Il grado non ha multipli, ma ha dei sottomultipli: il primo, corrispondente a di grado il secondo, corrispondente a di primo, cioè a di grado. Con gli angoli si possono eseguire le operazioni di addizione, sottrazione, moltiplicazione o divisione per un numero reale.
3
Misure di angoli ESEMPIO Sommiamo gradi con gradi, primi con primi e secondi con secondi. Il valore ottenuto per i secondi supera 60, cioè in esso è contenuto 1 primo, quindi: aggiungiamo 1 ai primi ottenendo Anche il valore ottenuto per i primi supera 60, quindi in esso è contenuto 1 grado: aggiungiamo 1 ai gradi ottenendo La somma dei due angoli, in forma normale, è quindi:
4
Misure di angoli Un radiante è l’ampiezza di un angolo al quale corrisponde un arco AB la cui lunghezza l è uguale al raggio r. In questo modo, ad esempio, un angolo giro misura: angolo giro angolo piatto angolo retto
5
Misure di angoli In generale, per passare dalla misura di un angolo in gradi a quella in radianti, e viceversa, si usa la proporzione x : misura nell’angolo in radianti y : misura nell’angolo in gradi ESEMPIO se vogliamo sapere quanto misura in gradi l’angolo di radianti, basta risolvere la proporzione rispetto a y oppure più semplicemente attribuire a π il suo valore in gradi:
6
Circonferenza goniometrica
Circonferenza goniometrica: circonferenza nel piano cartesiano con centro nell’origine degli assi e raggio unitario. In una circonferenza goniometrica ad un angolo orientato α possiamo associare un punto P appartenente alla circonferenza stessa. Se a due angoli α e β è associato lo stesso punto P allora: k indica il numero di giri che OP deve compiere per ritornare su se stessa. Si possono anche descrivere angoli negativi facendo compiere una rotazione oraria a OP.
7
Definizione Un angolo α, a meno di multipli di 360°, è completamente individuato se sono date le coordinate del punto P sulla circonferenza. Possiamo allora definire le seguenti funzioni goniometriche: seno dell’angolo α, e scriviamo sin α, l’ordinata del punto P: sin α = yP coseno dell’angolo α, e scriviamo cos α, l’ascissa del punto P: cos α = xP Tracciando la semiretta tangente in A alla circonferenza goniometica e indicando con Q la sua intersezione con la semiretta OP, chiamiamo: tangente dell’angolo α, e scriviamo tan α, l’ordinata del punto Q: tan α = yQ
8
Caratteristiche la funzione seno e la funzione coseno hanno periodo 360°, cioè: la funzione tangente è periodica di periodo 180°, cioè: Al reciproco della funzione tangente viene dato il nome di cotangente, cioè:
9
Grafici dellefunzioni goniometriche
Passa per i punti: x y 0° 2π 1 −1 π 2 3 Insieme di definizione: R −1 ≤ y ≤ 1 Periodo: 360° (2π) Il grafico della funzione seno è simmetrico rispetto all’origine
10
Grafici delle funzioni goniometriche
Passa per i punti: x y 0° 2π 1 −1 π 2 3 Insieme di definizione: R −1 ≤ y ≤ 1 Periodo: 360° (2π) Il grafico della funzione coseno è simmetrico rispetto all’asse y
11
Grafici delle funzioni goniometriche
Insieme di definizione: la tangente non è definita in Periodo: 180° (π) Gli angoli compresi tra 0 e hanno la tangente positiva che cresce molto rapidamente al crescere di x π 2 Gli angoli compresi tra e 0 hanno la tangente negativa che diminuisce molto rapidamente quando x si avvicina a π 2 − Il grafico della funzione tangente è simmetrico rispetto all’origine
12
Relazioni fondamentali
Tra le funzioni che abbiamo definito esistono delle relazioni: Deriva dal teorema di Pitagora applicato al triangolo OHP nella circonferenza goniometrica. Prima relazione fondamentale della goniometria Deriva dalla similitudine dei triangoli OHP e OKQ nella circonferenza goniometrica. Seconda relazione fondamentale della goniometria
13
sin α cos α tan α Relazioni fondamentali
Dalle due relazioni fondamentali si possono ricavare le formule che permettono di calcolare le funzioni goniometriche di un angolo a partire dal valore di una di esse. sin α cos α tan α Il segno ± viene attribuito in funzione del quadrante in cui cade α.
14
Valori delle Funzioni goniometriche
Con considerazioni di carattere geometrico si possono ricavare i valori delle funzioni goniometriche di alcuni angoli particolari. x (in gradi) 30° 45° 60° x (in radianti) sin x cos x tan x
15
I triangoli rettangoli
Risolvere un triangolo significa trovare le lunghezze di tutti i suoi lati e le misure di tutti i suoi angoli. Per il triangolo rettangolo valgono i seguenti due teoremi. Primo Teorema. In ogni triangolo rettangolo, la misura di un cateto è uguale: al prodotto della misura dell’ipotenusa per il seno dell’angolo opposto (al cateto che si deve trovare), oppure al prodotto della misura dell’ipotenusa per il coseno dell’angolo adiacente (al cateto che si deve trovare).
16
I triangoli rettangoli
Secondo Teorema. In ogni triangolo rettangolo, la misura di ciascun cateto è uguale: al prodotto della misura dell’altro cateto per la tangente dell’angolo opposto (al cateto che si deve trovare), al prodotto della misura dell’altro cateto per la cotangente dell’angolo adiacente (al cateto che si deve trovare).
17
I triangoli rettangoli
ESEMPIO Di un triangolo rettangolo sono note le misure in cm di due cateti: b = 12,4, c = 9,6. Vogliamo risolvere il triangolo e determinare la misura dell’altezza relativa all’ipotenusa. Con il teorema di Pitagora possiamo subito determinare la misura dell’ipotenusa: Dalle relazioni della slide precedente ricaviamo che: Possiamo ora calcolare Per trovare l’altezza relativa all’ipotenusa, basta applicare il primo teorema ad uno dei triangoli rettangoli indicati in figura; relativamente al triangolo arancio, dove c rappresenta la misura dell’ipotenusa, si ha che:
18
Area di un poligono I teoremi sui triangoli rettangoli permettono di risolvere il problema del calcolo dell’area di un poligono. Il calcolo dell’area di un poligono può sempre essere ricondotto al calcolo dell’area di un triangolo, per esempio tracciando le diagonali uscenti da un vertice. La misura dell’area di un triangolo è data dal semiprodotto delle misure di due suoi lati per il seno dell’angolo fra essi compreso.
19
Triangoli qualsiasi Teorema della corda. In ogni circonferenza, ciascuna corda è uguale al prodotto del diametro per il seno di uno qualunque degli angoli alla circonferenza che insistono sulla corda. Applicando il teorema della corda a un triangolo qualsiasi: Uguagliando i rapporti otteniamo: Teorema dei seni. In ogni triangolo i lati sono proporzionali ai seni degli angoli opposti.
20
Triangoli qualsiasi Teorema di Carnot. In ogni triangolo, il quadrato della misura di un lato è uguale alla somma dei quadrati delle misure degli altri due lati, diminuita del loro doppio prodotto moltiplicato per il coseno dell’angolo fra essi compreso. Questo teorema è anche noto come teorema del coseno.
21
Triangoli qualsiasi ESEMPIO L’applicazione del teorema dei seni e del teorema di Carnot permette di risolvere qualunque triangolo. Risolviamo il triangolo sapendo che Calcoliamo β = 180° − (60° + 45°) = 75° Usiamo poi il teorema dei seni per calcolare le misure degli altri due lati a e c:
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.